
OREKIT IN PYTHON
Petrus Hyvönen, for Orekit Day 2019
2019-05-23

2

SSC ACTIVITIES
WHO WE ARE

Satellite Management
Services

Engineering
Services

Science
Services

Public

INITIAL REASON OF PYTHON WRAPPED OREKIT

3Internal

• SSC is providing ground network services for its
customers

• Need tools to analyze ground network performance
• Was using some commercial tool but wanted

something more scriptable, free and open
• Was using Matlab also but had only a few licenses,

needed to be on corporate network and map plotting
was quite poor

• Started to look seriously at Python
• A general purpose language
• Supporting “Exploratory computing” ala Matlab

• But no real astrodynamics library in python… but in
java… So we made a wrapper to combine these
worlds.

Example of network analysis performed in
Python – time from image acquisition to

groundstation.

ONE VIEW OF PYTHON SCIENTIFIC ECOSYSTEM

4Internal

Original Illustration:Jake VanderPlas

MATPLOTLIB + BASEMAP / CARTOPY

5Internal

• “Starndard” package for 2-D plots
• Quck plot modes
• Advanced control for publication quality

plots
• Outputs both bitmap and vector graphics
• Inline output in jupyter notebooks
• Cartopy and basemap are add-ons for

advanced map generation
• Automatic transformation between

projections
• Shapefile support and accesses

different map bitmaps / vector maps
online

EXAMPLE MATPLOTLIB

6Internal

DIFFERENT PROJECTIONS

PANDAS

7Internal

• Labeled arrays and dataframes based
on NumPy arrays

• Easy to read / write different formats
and sources (csv, excel, web tables,
databases,…)

• Integrates well with the other Python
ecosystem

• Handles missing data, mixed types and
dates well

• Database type of joins, filters etc.
• Lots of tools to efficiently visualize

dataframes

“HIGH-PERFORMANCE, EASY-TO-USE DATA STRUCTURES AND DATA ANALYSIS TOOL”

JUPYTER NOTEBOOK & HUB
• Web application that integrates live code, results,

visualizations and rich documentation in the same view
• ”Document based”

• Last exection results part of file!
• Browser interface appeals to large number of users
• Exploratory computing
• SSC use it as frontend for a set of analysis routines
• Large set of visualization tools in development

connecting javascript libraries with jupyter widgets

ARCHITECTURE OF THE PYTHON
OREKIT WRAPPER

ARCHITECTURE

10Internal

• A gateway layer is created using JCC
• Analyzes the java library (jar)
• Generates C++ classes that wraps each

Java class using JNI
• Python interfaces are generated for C++

classes
• Orekit and Hipparchus libraries explicitly

wrapped
• Classes needed for methods or class

initialization are wrapped as well (can be
java.io.* classes for example)

• Python helper functions are included in the
pyhelpers module

• Orekit and the JVM is started in Python with
the command orekit.initVM()

OREKIT PYTHON WRAPPER

ANACONDA AND CONDA-FORGE

11Internal

• Last years a distribution of Python with packet
manager for data science and other usage has
become very popular, Anaconda.

• Free and most parts is open source.
• Make installation of a turn-key system with

standard set of packages very easy
• A community maintained, automated build

system for user maintained packages ”conda-
forge”

• Orekit and JCC are part of this, automatically
built for a number of platforms, configurations
and versions

• Test suite included in the automated build,
ensuring high level of confidence that it will run
at users installations

• Up to now 29.000 downloads…

A GREAT CONTRIBUTION TO SCIENTIFIC PYTHON

ARCHITECTUAL DIFFERENCES JAVA AND PYTHON

12Internal

• At a basic Orekit usage level it seems to be almost identical usage
• Most code can be translated almost mechanically

But,
• Typing not as hard in python

• Sometimes explicit casting is needed from python side
• For subclassing Java classes in Python, specific classes are needed

• Called ”PythonClassName” in the wrapper
• Python does not have overloaded methods / constructors

• For subclassing java classes in Python a naming scheme has been applied separating the
overloaded Orekit classes

WITH SOME WORKAROUNDS

CASTING

13Internal

Casting is done through the .cast_ method of the Python class that is the desired class type:

sun = CelestialBodyFactory.getSun() # Here we get it as an CelestialBody
sun = PVCoordinatesProvider.cast_(sun) # But we want the PVCoord interface

SUBCLASSING JAVA CLASSES IN PYTHON

14Internal

• Subclassing of java Classes in
Python is possible but some
adjustments in Java are
needed to the classes that are
to be subclassed.

• Specific “PythonClassName”
classes created for interfaces
and selected classes

• Consider however all
PythonClasses that don’t have
a test case as experimental

• A domain org.orekit.python is
used for these classes today

ONE OF THE QUIRKS

SUBCLASSING AND OVERLOADED METHODS

15Internal

• Some classes and interfaces in Orekit uses overloaded methods (methods with same name, different
parameters)

• This is not supported in Python in this form

• For classes that are to be subclassed in Python, a workaround for overloaded methods was needed
• Current solution:

• The most ”obvious” usage (!) will have same method name as the java method
• Other methods (often Field varieties) will have an extension to the method name consisting of the First

letter(s) of the input parameters

Example:
PythonExtendedPVCoordinatesProvider.getPVCoordinates(AbsoluteDate date, Frame frame)

PythonExtendedPVCoordinatesProvider.getPVCoordinates_FF(FieldAbsoluteDate<T> date, Frame frame)

SOME THOUGHTS OF PERFORMANCE

16Internal

• Benchmark of performance would be interesting, but not done
• Python – Java gateway takes overhead
• Reduced possibility for JIT optimization (both on java and python side)
• Effect depends alot on how it is used
• Orekit ”internal” performance not affected
• Perform propagation and event detection in the java side
• Avoid frequent callbacks to python (event detectors etc)

OREKIT PYTHON WRAPPER

DOCUMENTATION AND EXAMPLES

17Internal

• Wrapper documentation at gitlab wiki pages,
quite thin

• Java API documentation is the main
documentation for functionality, no need to
translate / change

• Some test cases translated to Python and
some new test cases for specific features.
These are the most advanced examples of
usage.

• More translation of test cases welcome as
contribution, good way to learn and
contribute!

• The new forum has become a good place for
questions and support

FOR OREKIT PYTHON WRAPPER

SUPPORT EXPERIENCE

18Internal

• Environment variable JCC_JDK needs to be
set. Done automatically by anaconda, but
the environment needs to be activated. This
is by far the most common issue.

• Orekit-data.zip file needed. Tempting to
include current version of this in the
package but this moves focus away from
the importance of this file..

• The orekit forum is a positive experience –
increased the interaction

SPECIFICALLY FOR THE WRAPPER

ROADMAP PYTHON OREKIT WRAPPER

19Internal

• Plan is to keep the Python Orekit Wrapper as close as possible to the Java API
• Follow release schedule of Java version with minor updates for Python stuff in

between
• Focus on the automated built packages in conda-forge and ease of use

“Add-ons”:
• Better docstrings. The best would be to have full Javadoc, but as a minimum the

call parameter types. (JCC)
• More test cases, translation of the java test suite. This is also important as a

documentation of how to use the wrapper.
• Transition github build repos to gitlab
• More examples and tutorials as Jupyter notebooks!

DEMO

20

USEFUL LINKS

21Internal

Installation:
• Anaconda Python Distribution:

http://docs.continuum.io/anaconda/install.html

• Instruction and source of the Orekit package for anaconda:
https://github.com/conda-forge/orekit-feedstock

Development:
• Orekit Python Wrapper Main site:

https://gitlab.orekit.org/orekit-labs/python-wrapper

• Main documentation:
https://gitlab.orekit.org/orekit-labs/python-wrapper/wikis/home

•

http://docs.continuum.io/anaconda/install.html
https://github.com/conda-forge/orekit-feedstock
https://gitlab.orekit.org/orekit-labs/python-wrapper
https://gitlab.orekit.org/orekit-labs/python-wrapper/wikis/home

