

DSST ORBIT DETERMINATION IN OREKIT

BRYAN CAZABONNE

CONCEPTEUR, OPÉRATEUR & INTÉGRATEUR DE SYSTÈMES CRITIQUES

www.c-s.fr

- →Context and target
- →DSST presentation
- → Mean Elements derivatives
- → State Transition Matrices
- → Short-periodic terms derivatives
- →Orbit Determination
- →Conclusion

CONTEXT AND TARGET

→ Fast Orbit Determination

• Several hundreds of thousands (Setty et al, 2016)

Number of Orbit Determinations performed by the US Joint Space Operation Center per day to maintain their space objects catalog.

Mean Elements Orbit Determination

Draper Semi-analytical Satellite Theory (DSST)

- Rapidity of an analytical propagator
- Accuracy of a numerical propagator

DSST PRESENTATION

ORBITAL PERTURBATIONS

DEVELOPMENT STEPS

MEAN ELEMENTS DERIVATIVES

La force de l'innovation

Each DSST-specific force model on Orekit has a method allowing the computation of the mean elements rates.

$$Y = [a h k p q \lambda] \longrightarrow \dot{Y} = \begin{bmatrix} \dot{a} \\ \dot{h} \\ \dot{k} \\ \dot{p} \\ \dot{q} \\ \dot{\lambda} \end{bmatrix}$$

Method implemented for the states based on the real numbers

→Need to be implemented to provide the Jacobians of the mean elements rates by automatic differentiation.

→GOAL

$$\begin{bmatrix} Y_i & \frac{\partial Y_i}{\partial Y_1} & \frac{\partial Y_i}{\partial Y_2} & \cdots & \frac{\partial Y_i}{\partial Y_6} & \frac{\partial Y_i}{\partial P_1} & \cdots & \frac{\partial Y_i}{\partial P_N} \end{bmatrix}$$

- **Y**_i: Orbital element
- **P**_k: Force model parameter
- N: The number of force model parameters taken into account for the Orbit Determination

→GAIN

- Safer implementation
- Simpler validation

STATE TRANSITION MATRICES

$$\dot{\mathbf{Y}'} = \begin{bmatrix} \dot{\mathbf{Y}} & \frac{\partial \dot{\mathbf{Y}}}{\partial \mathbf{Y}} & \frac{\partial \dot{\mathbf{Y}}}{\partial \mathbf{P}} \end{bmatrix}$$

→ Computation of $\frac{\partial Y}{\partial Y_0}$ and $\frac{\partial Y}{\partial P}$ matrices by finite differences and comparison to those previously obtained.

Problem : Different matrices !

- Newtonian Attraction derivatives were not taken into account in the computation of the state transition matrices.
- Some dependencies to the central attraction coefficient were implicit and therefore not differentiated.

Problem solved 🗸

SHORT-PERIODIC TERMS DERIVATIVES

ORBIT DETERMINATION

FORCE MODELS USED: GNSS

DSST	-		Numerical		
Minimum step (s)	6000		Minimum step (s)	0,001	
Maximum step (s)	86400	VS	Maximum step (s)	300	
Tolerance (m)	10		Tolerance (m)	10	

→ The DSST has significant advantage compared to the numerical propagator for the integration step. This because the elements computed numerically by the DSST are the mean elements.

Case	Zonal	Tesseral	Third Body
1	×	×	×
2	1	×	×
3	1	1	×
4	1	1	✓

Gradual addition of the short-periodic terms derivatives to highlight the main contributions.

→ Performed tests for Lageos2 Orbit Determination.

BATCH LEAST SQUARES / MEAN ELEMENTS

La force de l'innovation

CONCLUSION

OUTLOOKS

Need acces to « optimal » values for force models initialization.

Need to optimize critical computation steps.

Improve the Kalman Filter Orbit Determination with the DSST.

Thank you for your attention

Publication : Open-source Orbit Determination using semi-analytical theory (Cazabonne et al, 2018)

CONCEPTEUR, OPÉRATEUR & INTÉGRATEUR DE SYSTÈMES CRITIQUES

www.c-s.fr