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ABSTRACT  

The Naval Space Command PPT2 model of satellite motion has 
been used for 30 years to maintain a catalog of Earth satellites.  The 
PPT2 algorithm is based on Brouwer's 1959 artificial satellite theory and 
includes the Lyddane modification for small eccentricity and inclination 
and a separate modification for the critical inclination.  In this paper, the 
authors describe a modified version of PPT2 which includes a recursive 
analytical model for the portion of the tesseral harmonic perturbation that 
depends on just the Greenwich hour angle.  These tesseral m-daily 
terms are the major source of unmodeled periodic motion in PPT2 for 
many LEO satellite orbits.  The recursive tesseral model is drawn from 
the Draper Semianalytical Satellite Theory (DSST) and provides the 
short-period variations in terms of the equinoctial elements [tan(i/2) 
convention].  Modifications to the Lyddane expressions which allow the 
double-primed elements to be converted to single-primed and osculating 
(including the J2 short periodics) equinoctial elements are introduced.  
The software intricacies of accessing the DSST m-daily model from the 
R&D GTDS version of PPT2 are addressed.  Numerical comparisons of 
the PPT2-MDAILY algorithm with the DSST suggest that the additional 
errors of commission are negligible.  Numerical tests with DSST as a 
reference are also employed to demonstrate the errors associated other 
unmodeled perturbations (zonal short periodics other than J2, tesseral 
linear combination short periodics, unmodeled zonal terms in the secular 
and long periodic motion, etc.).  Numerical test results with Cowell as a 
reference are consistent with the DSST-based testing.  Very high 
precision, externally generated reference orbits for TOPEX and TAOS 
are used to demonstrate the accuracy improvement associated with 
PPT2-MDAILY. 
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INTRODUCTION 

The Naval Space Command PPT2 model of satellite motion (Refs. 1 and 2) has been 

used for about 30 years to maintain a catalog of Earth satellites.  The PPT2 algorithm is based on 

Brouwer's 1959 artificial satellite theory and is a contemporary of the Air Force Space Command 

GP theories SGP and GP4 (Ref. 3).  Accuracy and compatibility requirements continue to evolve 

(Ref. 4) and the Naval Space Command is presently testing an improved theory which adds the 

DP4 "deep space" terms (Ref. 5) to PPT2;  this new theory is called PPT3 (Ref. 6).  The Navy is 

also supporting the development of a more advanced, purely analytical theory (Ref. 7) as well as 

investigating orbit determination based on purely numerical means (Ref. 8). 

In 1995 the authors implemented the PPT2 theory within the workstation/PC version of 

the GTDS Orbit Determination Program (Ref. 9).  The numerical testing of the GTDS PPT2 

implementation included Differential Correction (DC) runs in which the PPT2 theory was least 

squares fit to either simulated or real data.  Of these, the most interesting runs were those in 

which PPT2 was fit to Precise Orbit Ephemeris (POE) data for the TOPEX and TAOS spacecraft.  

The TOPEX POE data is unique in that it provides position data that is accurate to 15 cm over the 

whole orbit.  This very high orbit accuracy is the result of accurate, temporally dense, and globally 

distributed tracking data (satellite laser ranging and DORIS receiver), and the application of 

improved satellite force models (Ref. 10).  For the lower altitude TAOS, the POE data is based on 

Differential GPS processing;  the TAOS POE orbits are believed to be accurate to about three (3) 

meters (Ref. 11). 

The comparisons between the best fit PPT2 trajectories and the POE trajectories provide 

new insight into the inherent accuracy of the PPT2 model.  Figures 1 and 2 show 
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Figure 1.  Along Track Differences, Best 
Fit PPT2 vs. TOPEX POE 

Figure 2.  Along Track Differences, Best 
Fit PPT2 vs. TAOS POE 

the along track differences for the TOPEX and TAOS cases, respectively.  The TOPEX fit span is 

about 4.6 days and TAOS fit span is 4 days.  Inspection of these differences shows high 

frequency oscillations with periods near the orbital period and longer period oscillations with 

periods near 12 and 24 hours.  In fact, the 12 and 24 hour oscillations are the major error in the 

along track position residuals.  This conclusion is supported by similar plots for the orbital 

elements.  This conclusion is also supported by a simulated data case [see Table 5 in Ref. 9]. 

In this paper, the authors extend the PPT2 theory to include a general recursive tesseral 

m-daily model.  The goal is to address the tesseral m-daily errors observed in Figures 1 and 2 

without significantly increasing the complexity of the algorithm.  We name the new theory PPT2-

MDAILY.  The recursive tesseral m-daily model is taken from the Draper Semianalytical Satellite 

Theory (DSST) (Ref. 12).   

Subsequent sections of the paper describe: 

• Mathematical Considerations for PPT2-MDAILY 

• GTDS PPT2-MDAILY Software Design 

• Numerical Testing of GTDS PPT2-MDAILY 
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• Conclusions and Future Work 

 

MATHEMATICAL CONSIDERATIONS FOR PPT2-MDAILY 

This section has three goals: 

1. to review the Brouwer-Lyddane theory 

2. to focus on the periodic recovery process employed in the PPT2 theory 

3. to introduce the new expressions employed in the PPT2-MDAILY theory 

The Naval Space Command PPT2 model of satellite motion is based on the work of 

Brouwer (Refs. 13 and 14).  The Brouwer theory accounts for gravitational effects of the zonal 

harmonics J2, J3, J4, and J5.  These effects, which are separated into secular, long period, and 

short period contributions, are modeled to low order.  PPT2 also includes the Lyddane 

modification to account for singularities which arise in the Brouwer equations of motion for zero 

eccentricity and zero inclination, while other modifications are made to address the singularities 

at the critical inclination (Ref. 1). 

The Brouwer equations of motion are based on the canonical Delaunay element set 

L = (µa)1/2    l = mean anomaly 

G = L (1 − e2)1/2   g = argument of perigee  (1) 

H = G cos I    h = longitude of ascending node 

and take the following form: 
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Ý L = ∂F
∂ l

Ý G =
∂F
∂g

Ý H =
∂F
∂h

   

Ý l = − ∂F
∂L

Ý g = −
∂F
∂G

Ý h = −
∂F
∂H

      (2) 

where: 

a is the semimajor axis 

e is the eccentricity 

I is the inclination 

µ is the gravitational parameter 

F is the Hamiltonian = U - 0.5v 2, in which 

 U is the gravitational potential for a non-spherical earth 

 v is the velocity 

The solution of Eq. (2) proves quite challenging due to the complex nature of the 

Hamiltonian (which is a function of L, G, H, l, and g; it is not a function of h).  However, these 

expressions can be simplified if the variables are transformed such that the resulting Hamiltonian 

is independent of some of the new variables.  In this manner, the solution to the transformed 

equations of motion leads to a subset of the variables remaining constant, while the remaining 

variables vary linearly with time. 

Brouwer implements two transformations.  The doubly transformed elements are referred 

to as double primed elements (i.e., L", G", H", l", g", and h").  These elements, which Brouwer 

also calls mean elements, contain only secular contributions from the gravitational perturbation.  

As it turns out, L", G", and H" are the subset of elements which remain constant, while l", g", and 

h" can be expressed as linear functions of time.  If L", G", and H" are constant, then the double 

primed elements a", e", and I" are also constant (in other words, semimajor axis, eccentricity, and 
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inclination experience no secular variation from the geopotential).  Starting with a given set of 

initial Brouwer mean elements, expressions for l" , g", and h" take the following form: 

l"  = l"o + not (1 + δl sec) 

g" = g"o + not δg sec        (3) 

h" = h"o + not δh sec 

where the o subscript refers to the initial value of the mean element, t is time, δelementsec is the 

secular contribution to the given element, and no = (µ/a"3)1/2, is the mean motion computed from 

the mean semimajor axis.  As mentioned previously, the other mean elements remain equal to 

their initial values: 

a" = a"o 

e" = e"o         (4) 

I" = I"o 

Brouwer makes a distinction between long period and short period contributions of the 

geopotential;  long period terms contain the argument of perigee (g) in their argument, while short 

period terms contain the mean anomaly in their argument (or combinations of l with other 

variables, such as g).  The Brouwer single primed elements (i.e., l', g', and h', as well as a', e', 

and I') contain secular (if applicable) and long period perturbing effects of the geopotential.  

However, care must used when computing the Brouwer periodic contributions to the elements.  

The expressions for the long period terms contain divisors which go to zero for values of 

eccentricity and inclination equaling zero, as well as for inclinations equaling the critical value. 

The Lyddane modification, which uses mean elements in the computation of short periodic 

quantities (rather than single primed elements), as well as a variation of the Delaunay element 

set, is used to address the singularities for zero values of eccentricity and inclination.  Other 

modifications have been added to PPT2 to account for the critical inclination problem (Ref. 1).   
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The periodic recovery process in PPT2 is organized around the computation of the 

following intermediate quantities: 

DE = ′ ′ e + δ 1e + δ2e + AGDE  

DI = sin
1
2

′ ′ I + cos
1
2

′ ′ I ⎛ 
⎝ 

⎞ 
⎠ 

1
2

(δ1I + δ 2 I + AGDI)  

DH = (sin ′ ′ I )(δ1h + δ 2h) + AGDH[ ]/ (2cos
1
2

′ ′ I )     (5) 

DL = ′ ′ e δ1l + ′ ′ e δ 2l + AGDL  

OS = ′ ′ l + ′ ′ g + ′ ′ h + δ1z + δ 2z + AGDG  

a = ′ ′ a + δ2 a + AGDA  

The definition of these quantities is motivated by Eq. (15) in Ref. 1.  In Eq. (5), the δ1  

terms are the long periodics [see Eq. (25) through Eq. (29) in Ref. 1] and the δ 2  terms are the 

short periodics [see Eq.(36) through Eq.(41) in Ref. 1].  The quantities i in Eq.(5) are the 

optional PPT2 corrections.  These are not considered further in the present work;  they are set 

equal to zero. 

AGD

Next, the following nonsingular quantities are computed: 

e cos l = DEcos ′ ′ l − DLsin ′ ′ l  

esin l = DEsin ′ ′ l + DL cos ′ ′ l  

(sin
1
2

I) cos h = DI cos ′ ′ h − DH sin ′ ′ h      (6) 

(sin
1
2

I)sin h = DI sin ′ ′ h + DH cos ′ ′ h  

Equation (6) is equivalent to Eq.(15) in Ref. 1.  The left hand sides of these equations are 

osculating quantities including both the long and short periodic effects.  These equations are 

easily solved for the osculating Keplerian elements. 
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For the PPT2-MDAILY theory developed in this paper, two additional outputs from PPT2 

are required.  These are: 

1. The single-primed equinoctial elements at an arbitrary request time 

2. The osculating equinoctial elements including the J2 short periodics at an 
arbitrary request time 

The equinoctial elements have the following definitions in terms of the Keplerian 

elements: 

a = a
h = esin(ω + Ω)
k = ecos(ω + Ω)
p = tan(i / 2)sinΩ
q = tan(i / 2)cosΩ

λ = M + ω + Ω

        (7) 

The single-primed equinoctial elements will be used in place of the DSST mean 

equinoctial elements as an input to the computation of the tesseral m-daily Fourier coefficients.  

This process will result in interpolators for the tesseral m-daily coefficients which are valid for a 

multiple day interval.  These interpolators can be refreshed as required in the PPT2-MDAILY 

output at request time function.   

The computation of the osculating equinoctial elements including the J2 short periodics is 

part of the strategy for assembling osculating equinoctial elements which include both the J2 and 

tesseral m-daily short periodics. 

To compute the osculating equinoctial elements [defined in Eq. (7)] including the J2 short 

periodics, Eq. (6) and the subsequent analytic solution are replaced with 
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a = ′ ′ a + δ2 a
esin(ω + Ω) = DE sin(OS − ′ ′ l ) − DL cos(OS − ′ ′ l )
e cos(ω + Ω) = DE cos(OS − ′ ′ l ) + DLsin(OS − ′ ′ l )

tan(i / 2)sin Ω =
DIsin( ′ ′ h ) + DH cos( ′ ′ h )

1− DI 2 − DH2

tan(i / 2)cosΩ =
DI cos( ′ ′ h ) − DH sin( ′ ′ h )

1 − DI 2 − DH 2

M + ω + Ω = ′ ′ l + ′ ′ g + ′ ′ h + δ1z + δ2z

    (8) 

The equations for esin(ω + Ω)  and e cos(ω + Ω)  are obtained by straightforward 

algebraic manipulation of Eqs. (5) and (6).  The term OS − ′ ′ l  in Eq. (8) is evaluated via the 

expression 

OS − ′ ′ l = ′ ′ g + ′ ′ h + δ1z + δ2z       (9) 

To compute the single-primed equinoctial elements, we truncate Eq.(5) so that the J2 

short periodics are not included.  The new result is  

DE = ′ ′ e + δ 1e

DI = sin
1
2

′ ′ I + cos
1
2

′ ′ I ⎛ 
⎝ 

⎞ 
⎠ 

1
2

(δ1I)

DH = (sin ′ ′ I )(δ1h)[ ]/ (2cos 1
2

′ ′ I )

DL = ′ ′ e δ1l
OS = ′ ′ l + ′ ′ g + ′ ′ h + δ1z
a = ′ ′ a 

      (10) 

These equations can be used in the right hand sides of Eq. (8) to produce the single 

primed equinoctial elements.  The only modification is that the term OS − ′ ′ l  is given by 

OS − ′ ′ l = ′ ′ g + ′ ′ h + δ1z        (11) 

9 



For the PPT2-MDAILY theory, it is assumed that the Brouwer single primed equinoctial 

elements directly correspond to the DSST mean equinoctial elements.  With the DSST mean 

equinoctial elements available, the tesseral m-daily short periodic contributions for each 

equinoctial element (ηi, where i represents the particular equinoctial element) can be computed 

by: 

ηi = Ci
j(a,h,k, p,q, t)cos( jθ ) + Si

j (a,h,k, p,q,t)sin( jθ)[ ]
j =1

j max

∑   (12) 

In Eq. (12), the Fourier coefficients C and S are functions of the first five, mean equinoctial 

elements and time.  The quantity θ in Eq.(12) represents the Greenwich hour angle. 

To make the tesseral m-daily computation more efficient, the Fourier coefficients C and S 

in Eq.(12) are computed at a few, equally-spaced time points.  Using these values, Lagrange 

interpolators for the C and S coefficients are constructed.  It is the interpolators for the C and S 

coefficients that are employed at each output request time.  

The PPT2-MDAILY output at request time functionality can be summarized as follows: 

1. Compute the equinoctial elements including the J2 short-periodics via equations 
(5) and (8) 

2. Compute the tesseral m-daily corrections to the equinoctial elements via 
equation (12) 

3. Sum the two contributions to obtain the osculating equinoctial elements 

4. Convert the osculating equinoctial elements to position and velocity via the two-
body mechanics expressed in terms of the equinoctial elements 

 

GTDS PPT2-MDAILY SOFTWARE DESIGN 

The purpose of this development is to establish the capability to exercise the PPT2 

theory in conjunction with a subset of the DSST short periodic models.  Here, the DSST short 
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periodic model is considered to include both the package for managing the short periodic 

coefficient interpolators (subroutines SPGENR, SPCOEF, SPMOVE, SPINTP, etc.) and the 

detailed astrodynamic models for the short periodic coefficients (SPZONL, SPMDLY, SPJ2MD, 

SPTESS, etc.).  The DSST also includes two key common blocks:  /SPINTG/ and /SPREAL/.  

Common block /SPINTG/ includes the integer flags for controlling the DSST short periodic model 

and /SPREAL/ includes all the real variables (including the interpolator coefficients) associated 

with the short-periodic models.  Both of these common blocks are configured to support the 

complete DSST short periodic model.  With this background, three design concepts evolved: 

1. a simple implementation which allowed subroutine PPT2 to make a direct call to 
the detailed tesseral m-daily model (subroutine SPMDLY) 

2. a more operationally-oriented implementation in which the DSST routines for 
managing the short periodic coefficient interpolators and the associated common 
blocks /SPINTG/ and /SPREAL/ are replaced with modules tailored to a PPT2 
tesseral m-daily only capability 

3. a design in which just the drivers for the DSST short-periodic model truncation, 
interpolator coefficient generation, and application are replaced with drivers 
tailored to PPT2 

The first concept had the advantages of requiring minimal software development and 

being self-contained.  However, it did not include the short-periodic coefficient interpolator 

concept.  As a result, the computational speed of this concept would not represent fairly the true 

capability of the PPT2-MDAILY theory.  The second concept required the most software 

development of the three.  It does have the advantage that the product could be implemented 

more easily in a non-GTDS environment.   

The third concept requires moderate software development;  however, the predominant 

portion of the DSST package for managing the short periodic coefficient interpolators is 

unmodified.  Thus the third concept offers the most flexibility in experimenting with the 

PPT2/DSST short periodic hybrid satellite theory.  This is the concept that has been adopted in 

the present exploratory development. 
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Figure 3 gives an overview of the present GTDS PPT2-MDAILY capability. 
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Figure 3.  GTDS PPT2-MDAILY Software Architecture 

Overall, eight (8) existing GTDS modules were modified and three (3) new modules were 

created.  The new modules are: 

• PPT_INIT 

• PPT_GENR 

• PPT_SPOR 

Subroutine PPT_INIT sets the DSST short-periodic switches so that only the tesseral m-

daily model is exercised with the desired geopotential degree and order and coefficient 

interpolator configuration.  Subroutine PPT_GENR is called by the RESPPT to compute the first 

tesseral m-daily coefficient interpolator.  Nominally, this interpolator would be valid for a multiple 
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day interval.  Subroutine PPT_GENR is also called by ORBPPT in case the tesseral m-daily 

coefficient interpolator needs to be refreshed.  A primary difference between PPT_GENR and its 

DSST analog (SPGENR) is that PPT_GENR calls PPT2 to obtain the single-primed equinoctial 

elements on the short periodic coefficient grid.  The single-primed elements are the input to 

SPCOEF (taking the place of the DSST mean elements in that theory).  Subroutine PPT_SPOR 

constructs the osculating equinoctial elements including both the J2 short periodics and tesseral 

m-daily terms and the corresponding perturbed position and velocity.  Subroutine PPT_SPOR 

calls SPINTP to evaluate the tesseral m-daily coefficient interpolators at the output request time 

and then subroutine SPDIFF to assemble the m-daily short periodic variations in the equinoctial 

element space.  These variations are added to the J2 osculating elements computed within 

subroutine PPT2.  Finally, PPT_SPOR calls EQUNPV to convert the osculating equinoctial 

elements to position and velocity. 

The eight (8) modified modules are: 

• SETORB 

• SETOG1 

• PPTELSBD 

• CENANG 

• RESPPT 

• ORBPPT 

• PPT2 

• PPTPARBD 

Modules SETORB, SETOG1, and PPTELSBD (block data for common /PPTELS/) were 

modified to support additional input data options for the PPT2-MDAILY theory.  Subroutine 

CENANG is used to set the physical constants and orientation angles of the central body in the 

DSST short periodic model;  CENANG was modified to support the NORAD True of Reference 
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integration coordinate system employed by PPT2.  RESPPT and ORBPPT were modified to 

make the calls to the new subroutines PPT_INIT, PPT_GENR, and PPT_SPOR.   The core 

subroutine PPT2 was modified to output single primed and osculating equinoctial elements at 

each output request time.  Common block /PPTPAR/ (described in module PPTPARBD) was 

modified to support communication of the single primed and osculating equinoctial elements.  

The original development of RESPPT and ORBPPT is described in Ref. 9. 

The development and testing described in this paper have been accomplished in a PC 

computing environment.  Both a Winbook XP 486 PC-compatible notebook and a Gateway 2000 

Pentium PC-compatible desktop platform have been employed. 
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NUMERICAL TESTING OF GTDS PPT2-MDAILY 

 

Testing of the GTDS PPT2-MDAILY Capability with Truth Data Generated by the Draper 
Semianalytic Satellite Theory (DSST) 

As discussed in the preceding paper (Ref. 9), testing a perturbation theory against a 

reference theory with equivalent physical force models is a well established procedure for 

verifying that the perturbation theory correctly includes those effects considered in the theory 

development (Refs. 15-18).  In this subsection, various test cases are presented in which the 

GTDS PPT2-MDAILY and GTDS PPT2 theories are least squares fit to reference orbits 

generated with the DSST.  DSST has been chosen to generate the reference orbits since its 

perturbation models (geopotential, drag, third body, and solar radiation pressure) can easily be 

separated into secular/long period, and short period contributions.  The ability to analyze each 

subset of the zonal and tesseral harmonics (resonance, m-dailies, and linear combination terms) 

independently and to an arbitrary degree and order is particularly useful. 

For the first test case, initial conditions matching those employed in the original GTDS 

PPT2 test process (see Ref. 9, Figure 15) are used in the generation of the truth trajectory.  The 

chosen DSST mean elements correspond to a near circular, 450 km orbit inclined at 75 degrees.  

The Test Case 1 Truth Model Parameters are given in Table 1. 
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Table 1.  Test Case 1 Truth Model Parameters 

Parameter Value Parameter Value 

Epoch (YYMMDD.0) 820223.0 Epoch (HHMMSS.S) 000000.0 

Input Coordinate 
Frame 

GTDS True of Date Atmospheric Drag No 

Input Element Type DSST Average 
(Mean) Keplerian 

Solar Radiation 
Pressure 

No 

Semimajor Axis 6835.0814 km Third Body Point 
Mass 

No 

Eccentricity 0.0010201164 Gravitational 
Parameter 

398597.63 km3/sec2 

Inclination 74.9567 deg Gravity Model WGS 72 

Longitude of 
Ascending Node 

228.6393 deg DSST Step Size 43200 sec 

Argument of Perigee 271.2229 deg Integration Coordinate 
Frame 

GTDS Mean of 1950 

Mean Anomaly 88.164558 deg Output Coordinate 
Frame 

GTDS Mean of 1950 

The DSST force models used in the truth ephemeris for Test Case 1 are chosen to 

include those terms that PPT2-MDAILY models exactly: 

TEST # 1 

Mean Element Equations of Motion

• 5 x 0 zonal harmonics 
• J22 terms 

Short Periodics
• J2 terms 

• Tesseral M-daily terms (through degree and order 5)3

                                                 

3 The exact solution for the tesseral m-daily Fourier coefficients corresponding to the 5x5 
terms implements eccentricity to the 3rd power 
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The next step in the process is to fit both PPT2 and PPT2-MDAILY to the DSST truth 

data.  The initial conditions for the least squares fit to the DSST truth trajectory are given in Table 

2. 

Table 2.  Test Case 1 PPT2/PPT2-MDAILY DC Input Parameters 

Parameter Value Parameter Value 

Epoch (YYMMDD.0) 820223.0 Epoch (HHMMSS.S) 000000.0 

Input Coordinate 
Frame 

GTDS NORAD TEME Fit Span Length 3 Days 

Input Element Type PPT2 Mean Keplerian Solve for M2 No 

Semimajor Axis 6835.08 km Solve for M3 No 

Eccentricity 0.001 Gravitational 
Parameter 

398597.63 km3/sec2 

Inclination 74.95 deg Gravity Model WGS 72 

Longitude of 
Ascending Node 

228.6393 deg M-daily Terms Through Degree and 
Order 5 

Argument of Perigee 271.2 deg Position Observation 
σ 

1500 m 

Mean Anomaly 88.16 deg Velocity Observation 
σ 

150 cm/sec 

M2 0.0 rad/Herg2 Integration Coordinate 
Frame 

GTDS NORAD TEME 

M3 0.0 rad/Herg3 Output Coordinate 
Frame 

GTDS Mean of 1950 

 

The results of the least squares fits to the truth data are given in Table 3. 
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Table 3.  Test Case 1 PPT2/PPT2-MDAILY DC Results 

Parameter GTDS PPT2 (Original) GTDS PPT2-MDAILY 

Run Time 38.34 sec 41.25 sec 

DC RMS 595.30 m 15.35 m 

DC Iterations 6 5 

Semimajor Axis σ 8.01907 cm 0.210646 cm 

Total Position Error RMS* 

3 Day Fit 

611.62 m 15.271 m 

Total Position Error RMS* 

3 Day Predict 

628.79 m 15.872 m 

In Table 3, the Total Position Error RMS is a product of the GTDS Compare Program.  

The difference between the DC RMS and the Total Position Error RMS (3 day fit) is the number 

of comparison points used in the generation of the metric (the Compare Program was configured 

to use fewer comparison points than the DC RMS calculation;  the DC RMS calculation used one 

point every 450 seconds, while the Compare Program used one point every 2700 seconds).  All 

timing metrics in this paper were obtained via a call to an internal clock routine immediately prior 

to and subsequent to program execution on the Gateway 2000 Pentium PC. 

These results indicate a 15.35 m difference between the truth model and PPT2 MDAILY 

theory.  When the original GTDS PPT2 theory was fit to a DSST truth model containing these 

same force models except the m-dailies (i.e., the force models in the DSST truth and GTDS 

PPT2 were nearly identical, see Ref. 9:  Table 1), a 15.24 m error resulted.  This indicates 

negligible additional error of commission was introduced through the attachment of the m-daily 

model to GTDS PPT2.  Thus we claim that the m-daily model was properly attached to GTDS 

PPT2.   
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The improvement gained by using the m-daily model can be seen clearly in Table 3; the 

magnitude of the DC RMS is reduced by over 500 m (an error nearly 40 times smaller).  An 

analysis of element difference plots between the truth and GTDS PPT2 trajectories exhibits the 

12 and 24 hour frequency oscillations characteristic of the m-dailies.  These error signatures are 

not evident in the difference plots between GTDS PPT2 M-DAILY and the truth trajectory.  This 

improvement was gained at the expense of a 7.5 % increase in run time. 

The next several test cases incrementally add other perturbation effects to the DSST 

truth model.  Because these effects are not modeled in PPT2-MDAILY, the differences between 

the best fit PPT2-MDAILY trajectory and the DSST truth are generally larger than in Table 3.  

These cases allow an assessment of the desirability of adding additional classes of terms to the 

PPT2-MDAILY theory.  Table 4 lists the error sources considered in each test case. 

Table 4.  Error Sources by Test Case 

Test Case 
No. 

Error Sources Considered 

2 J3, J4, J5 short periodics 

3 J3, J4, J5 short periodics 

5 x 5 Tesseral Linear Combination Terms 

4 J3, J4, J5 short periodics 

5 x 5 Tesseral Linear Combination Terms 

J2-squared short periodics 

5 J3, J4, J5 short periodics 

5 x 5 Tesseral Linear Combination Terms 

J2-squared short periodics 

J2/m-daily coupling 

6 J6,...,J12 secular and long periodic terms  
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7 secular, long periodic, and short periodic 
effects due to Jacchia 1970 density model 
with fixed F10.7 and Ap 

 

For Test Case 2, the initial conditions from the first test case were used to generate the 

truth trajectory.  For this test, however, a full zonal short periodic model was included in the DSST 

truth generation: 

TEST # 2 

Mean Element Equations of Motion

• 5 x 0 zonal harmonics 

• J22 terms 

Short Periodics

• Zonal terms through degree 54

• Tesseral M-daily terms (through degree and order 5) 

The initial conditions for the least squares fit to this truth trajectory are the same as those 

given in Table 2 for the first test case.  The results of the differential correction runs for the 

second test case are given in Table 5. 

Table 5.  Test Case 2 PPT2/PPT2-MDAILY DC Results 

Parameter GTDS PPT2 (Original) GTDS PPT2-MDAILY 

Run Time 37.76 sec 39.44 sec 

DC RMS 595.28 m 14.44 m 
                                                 

4 Zonal short periodics through degree 5 implement eccentricity to the 4th power and 11 
frequencies in the true longitude 
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DC Iterations 6 5 

Semimajor Axis σ 8.01837 cm 0.174895 cm 

Total Position Error RMS 

3 Day Fit 

611.61 m 14.278 m 

Total Position Error RMS 

3 Day Predict 

629.41 m 15.072 m 

The results for this particular test case are inconclusive with regards to the zonal short 

periodic model;  it is expected their impact would be small.  However, it would be best to analyze 

the impact of the zonal short periodics across a spectrum of different orbits (especially near earth 

orbits with different inclinations and eccentricities).  For this particular test case, it could be 

concluded the extra computational expense is not worth the accuracy difference. 

The next run (Test Case 3) adds tesseral linear combination short periodics to the DSST 

truth trajectory (other initial conditions for the DSST truth remain the same as in the first two test 

cases): 

TEST # 3 

Mean Element Equations of Motion

• 5 x 0 zonal harmonics 

• J22 terms 

Short Periodics

• Zonal terms through degree 5 

• Tesseral M-daily terms (through degree and order 5) 

• Tesseral linear combination short periodics (through degree and order 5)5

                                                 
5 Tesseral linear combination terms through degree and order 5 implement eccentricity 

squared to the 2nd power (d'Alembert characteristic to the 4th power) and frequencies in 
the mean longitude ranging from -9 to 9 
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The initial conditions for the least squares fit to this truth trajectory are the same as those 

given in Table 2 for the first (and second) test case.  The results of the differential correction runs 

for the third test case are given in Table 6. 

Table 6.  Test Case 3 PPT2/PPT2-MDAILY DC Results 

Parameter GTDS PPT2 (Original) GTDS PPT2-MDAILY 

Run Time 38.06 sec 38.28 sec 

DC RMS 606.43 m 53.09 m 

DC Iterations 6 4 

Semimajor Axis σ 8.10886 cm 0.778215 cm 

Total Position Error RMS 

3 Day Fit 

623.30 m 52.332 m 

Total Position Error RMS 

3 Day Predict 

643.04 m 53.414 m 

Based on these results, it can be concluded that the tesseral linear combination short 

periodics account for about another 40 meters worth of accuracy (in a one sigma sense).  This 

contribution mainly surfaces in the fit span due to the periodic nature of the tesseral short 

periodics;  no dominant secular increase in error is evident in the predict span.  For potential 

applications like catalog maintenance with a large number of space objects, the increased 

computational expense required to include the tesseral short periodics is not worth the accuracy 

improvement gained (keep in mind the timing metrics presented in Table 6 are somewhat 

misleading since the GTDS PPT2-MDAILY theory converged in 4 iterations while the GTDS 

PPT2 theory took 6 iterations).  However, for applications requiring the best available force 

models and high accuracy, the tesseral short periodics are a necessity. 
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The next test case added J22 short periodic terms (Test Case 4) to the DSST truth 

model, followed by J2 m-daily coupling short periodic terms (Test Case 5).  In this manner, the 

DSST's geopotential model was complete through degree and order five (DSST's best emulation 

of a 5x5 Special Perturbations/numerical integration technique).  For both of these test cases, the 

DC RMS was approximately 53 meters.  Since it was already proven the zonal short periodics 

spanning J3 to J5 did not particularly impact accuracy for these initial conditions, it was not 

expected that other terms of this order (i.e., J22 and J2 m-daily) would significantly impact 

accuracy.   In general, an analysis of results of the aforementioned test cases proves that the 

dominant geopotential short periodic (outside of J2) are the m-daily terms. 

Test Case 6 analyzes the impact of expanding the averaged equations of motion for the 

DSST truth model (other initial conditions for the DSST truth remain the same as in the other test 

cases): 

TEST # 6 

Mean Element Equations of Motion

• 12 x 0 zonal harmonics 

• J22 terms 

Short Periodics

• J2 terms 

• Tesseral M-daily terms (through degree and order 5) 

The initial conditions for the least squares fit to this truth trajectory are the same as those 

for the other test cases.  The results of the differential correction runs for the sixth test case are 

given in Table 7. 

Table 7.  Test Case 6 PPT2/PPT2-MDAILY DC Results 
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Parameter GTDS PPT2 (Original) GTDS PPT2-MDAILY 

Run Time 39.64 sec 38.90 sec 

DC RMS 599.60 m 71.06 m 

DC Iterations 5 4 

Semimajor Axis σ 8.08373 cm 0.964262 cm 

Total Position Error RMS 

3 Day Fit 

614.03 m 72.965 m 

Total Position Error RMS 

3 Day Predict 

661.45 m 243.56 m 

These results, when compared to those of Test Case 1, suggest that secular and long 

period zonal effects spanning J6 - J12 have a non-trivial impact upon the accuracy of a trajectory;  

approximately 55 meters can be accredited to these terms during the fit span (with an even larger 

impact in the predict span).  Again, if future efforts are undertaken to enhance the accuracy of 

analytic theories, higher degree secular and long period zonal contributions should be 

considered. 

All the testing described thus far has focused solely on the geopotential.  In reality, other 

perturbations greatly impact near earth trajectories.  One of the most dominant (and 

unpredictable) perturbative effects stems from atmospheric drag.  Test Case 7 included drag in 

the DSST truth model (other initial conditions for the DSST truth remain the same as in the other 

test cases). 

TEST # 7 

Mean Element Equations of Motion

• 5 x 0 zonal harmonics 
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• J22 terms 

• Atmospheric drag:  Jacchia 70 Density Model (F10.7 = 150, Ap = 12, area/mass 

= 0.01m2/kg) 

Short Periodics

• J2 terms 

• Tesseral M-daily terms (through degree and order 5) 

• Atmospheric drag 

The initial conditions for the least squares fit to this truth trajectory are the same as those 

for the other test cases (except that the PPT2 drag parameter M2 is set to the value of 5.D-8 

rad/Herg2 rather than zero).  The results of the differential correction runs for the Test Case 7 are 

given in Tables 8 and 9. 
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Table 8. Test Case 7 PPT2/PPT2-MDAILY DC Results (solve for M2) 

Parameter GTDS PPT2 (Original) 

Solve For M2 Only 

GTDS PPT2-MDAILY 

Solve For M2 Only 

Run Time 38.29 sec 38.80 sec 

DC RMS 594.53 m 50.33 m 

DC Iterations 6 4 

Semimajor Axis σ 31.3689 cm 2.49692 cm 

M2 0.1128x10-6 0.1123x10-6 

M2 σ 0.187x10-9 0.149x10-10 

Total Position Error RMS 

3 Day Fit 

610.18 m 54.317 m 

Total Position Error RMS 

3 Day Predict 

1596.2 m 1953.6 m 

 

Table 9. Test Case 7 PPT2/PPT2-MDAILY DC Results (solve for M2 and M3) 

Parameter GTDS PPT2 (Original) 

Solve M2 and M3 

GTDS PPT2-MDAILY 

Solve M2 and M3 

Run Time 38.78 sec 40.92 sec 

DC RMS 590.99 m 45.11 m 

DC Iterations 6 6 

Semimajor Axis σ 77.1743 cm 5.24562 cm 

M2 0.1053x10-6 0.1095x10-6 

M2 σ 0.111x10-8 0.750x10-10 

M3 0.1559x10-10 0.5989x10-11 
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M3 σ 0.227x10-11 0.154x10-12 

Total Position Error RMS 

3 Day Fit 

606.80 m 48.328 m 

Total Position Error RMS 

3 Day Predict 

3658.1 m 184.56 m 

  These results emphasize the dominant effect atmospheric drag has on near-earth 

satellite orbits;  predict span errors and sigmas in semimajor axis are greatly increased.  It is 

interesting to note how much better the GTDS PPT2-MDAILY theory performs than GTDS PPT2 

(original) when both drag solve-fors (M2 and M3) are used.  This effect is indicative of the DC's 

ability to better separate drag and geopotential effects when more complete force models are 

included in the perturbation theory.  In addition, the solutions for the drag parameters have 

sigmas at least an order of magnitude smaller for the GTDS PPT2-MDAILY theory.  Finally, it 

should be stressed that this case represents a simulated data study.  Specifically, there is no 

evolution of the atmosphere density parameters during the prediction span.  Subsequent analysis 

with real observational data will further address the impact of atmospheric drag.   

 

Testing of the GTDS PPT2-MDAILY Capability with Truth Data Generated by the GTDS 
Cowell (Special Perturbations) Theory 

The use of truth trajectories generated by Special Perturbation techniques is widely 

considered the best method of simulating real world satellite motion.  For this reason, two test 

cases using Special Perturbation-generated truth data are presented in this section as a cross-

check of some of the DSST testing described in the previous section.  The first reference orbit 

includes geopotential effects through the 5th degree and order (no other perturbations are 

considered).  This orbit is created by passing the osculating elements from a one day DSST run 
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with force models and initial conditions as outlined in Test Case 1 to the GTDS Cowell Orbit 

Generator (note: the Cowell Orbit Generator uses WGS 72 coefficients and the PPT2 value of the 

gravitational parameter for this test case).  Then, GTDS PPT2 is least squares fit to the Cowell 

reference orbit over a three day span (since a one day DSST run was required to generate the 

osculating elements which correspond to the mean elements used in the DSST test cases, the fit 

span is the 24-27 Feb 82 rather than 23-26 Feb 82).  Initial conditions for the DC are given in 

Table 10. 

Table 10.  Test Case 8  PPT2/PPT2-MDAILY DC Input Parameters 

Parameter Value Parameter Value 

Epoch (YYMMDD.0) 820224.0 Epoch (HHMMSS.S) 000000.0 

Input Coordinate 
Frame 

GTDS NORAD TEME Fit Span Length 3 Days 

Input Element Type PPT2 Mean Keplerian Solve for M2 No 

Semimajor Axis  6834.9 km Solve for M3 No 

Eccentricity  0.0014 Gravitational 
Parameter 

398597.63 km3/sec2 

Inclination   64.8 deg Gravity Model WGS 72 

Longitude of 
Ascending Node 

 224.0 deg M-daily Terms Through Degree and 
Order 5 

Argument of Perigee   271.0 deg Position Observation 
σ 

1500 m 

Mean Anomaly   216.0 deg Velocity Observation 
σ 

150 cm/sec 

M2 0.0 rad/Herg2 Integration Coordinate 
Frame 

GTDS NORAD TEME 

M3 0.0 rad/Herg3 Output Coordinate 
Frame 

GTDS Mean of 1950 

Results for this test are given in Table 11. 
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Table 11.  Test Case 8  PPT2/PPT2-MDAILY DC Results 

Parameter GTDS PPT2 (Original) GTDS PPT2-MDAILY 

Run Time 37.02 sec 39.77 sec 

DC RMS 563.59 m 56.87 m 

DC Iterations 5 5 

Semimajor Axis σ 7.84019 cm 0.843381 cm 

Total Position Error RMS 

3 Day Fit 

601.31 m 58.274 m 

Total Position Error RMS 

3 Day Predict 

610.79 m 81.176 m 

As expected, these results very closely follow those of Test Case 5 (not included in this 

document for the sake of brevity), which used DSST's best emulation of a 5x5 Special 

Perturbations technique.  These results can also be compared with Test Case 3 (Table 6).  Slight 

differences are found in the predict span (Test Case 5's errors in the predict span were roughly 

25 meters smaller than those given in Table 11), mainly due to truncations in the DSST short 

periodic model.  The particular configurations for the short periodic generator were selected at 

run time and, if necessary, could be configured to include more complete modeling.  This 

increased modeling, however, would be gained at the expense of computational efficiency.   

The second Cowell test case (Test Case 9) added atmospheric drag to the first Cowell 

test case (Harris-Priester density model with F10.7 = 150).  All other test parameters were the 

same as in the first Cowell case (a priori M2 value = 5.D-8, M3 = 0).  The results are given in 

Tables 12 and 13. 

Table 12.  Test Case 9  PPT2/PPT2-MDAILY DC Results (solve for M2) 
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Parameter GTDS PPT2 (Original) 

Solve For M2 Only 

GTDS PPT2-MDAILY 

Solve For M2 Only 

Run Time 38.12 sec 40.87 sec 

DC RMS 575.75 m 94.11 m 

DC Iterations 5 5 

Semimajor Axis σ 30.5859 cm 4.88109 cm 

M2 0.1031x10-6 0.1026x10-6 

M2 σ 0.182x10-9 0.291x10-10 

Total Position Error RMS 

3 Day Fit 

598.35 m 100.32 m 

Total Position Error RMS 

3 Day Predict 

2009.9 m 2435.9 m 
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Table 13.  Test Case 9  PPT2/PPT2-MDAILY DC Results (solve for M2 and M3) 

Parameter GTDS PPT2 (Original) 

Solve M2 and M3 

GTDS PPT2-MDAILY 

Solve M2 and M3 

Run Time 38.06 sec 39.76 sec 

DC RMS 570.54 m 88.28 m 

DC Iterations 5 5 

Semimajor Axis σ 74.8626 cm 11.0891 cm 

M2 0.9501x10-7 0.9869x10-7 

M2 σ 0.107x10-8 0.159x10-9 

M3 0.1692x10-10 0.8088x10-11 

M3 σ 0.220x10-11 0.326x10-12 

Total Position Error RMS 

3 Day Fit 

594.48 m 93.015 m 

Total Position Error RMS 

3 Day Predict 

3657.8 m 355.75 m 

These results show the same trends evident in Test Case 7.  Note that different 

atmosphere density models are used in the two test cases so exact agreement is not expected.  

GTDS PPT2 MDAILY greatly outperforms GTDS PPT2 when solutions for M2 and M3 are 

obtained.  Again, original PPT2 (without the m-dailies) performs worse when solving for both drag 

parameters than it does when solving only for M2. 
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Testing of the GTDS PPT2-MDAILY Capability where the Truth Orbits are Actual Orbits 

The results discussed thus far have focused on the processing of simulated data 

generated by truth models configured for orbital dynamics similar to those contained in PPT2 and 

PPT2-MDAILY. The ultimate test of a propagation theory is its performance with regard to 

observational data generated by real world tracking techniques (i.e., skin-track observations, 

transponder data, etc.).  It becomes extremely difficult, however, to maintain controlled conditions 

in testing of this nature; clock errors, quantity of observations, orbital dispersion of observations, 

and biases and standard deviations in the tracking data which are station dependent are just a 

few of the problems which must be considered when processing real world data.  In addition, the 

question of "what is truth?" must be addressed.  In the past, attempts to maintain controlled 

testing conditions (which provide insight on the pure limitations of the physical modeling in a 

perturbation theory) have centered around using special perturbations techniques with the best 

available force models for truth trajectories.    

Recently, the development of Precise Orbit Ephemeris (POE) data for spacecraft 

equipped with satellite laser retro-reflectors, GPS receivers, or other precise onboard navigation 

equipment has led to a break-through in the manner in which perturbation theories are tested.  

The POE data is comprised of Earth-centered, Earth-fixed (ECEF) position and velocity vectors 

on a regularly spaced time grid over the entire orbit.  One example, the TOPEX POE, results from 

accurate, temporally dense, and globally distributed tracking data (satellite laser ranging and 

DORIS receiver) processed with improved force models through a combined effort of individuals 

at NASA GSFC, CNES, and the University of Texas at Austin (Ref. 19). Other POE solutions, 

such as those for TAOS (Ref. 20) are based on differential GPS processing.  The accuracy of 

these POE solutions can be summarized as follows (Refs. 19 and 20): 

• TOPEX ~ 15 cm 
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• TAOS ~ 3 m 

The TAOS orbit is of particular importance since it is around 500 km and significantly 

perturbed by atmospheric drag. 

In this section, the results of processing the TOPEX and TAOS POE solutions with GTDS 

PPT2 and GTDS PPT2-MDAILY will be presented.  The steps in the test procedure are as 

follows: 

1. Least squares fit GTDS PPT2 and GTDS PPT2-MDAILY to the POE solutions 
using the first position and velocity set in the POE file as an a priori guess for the 
DC 

2. Generate a trajectory based on the DC solve-for parameter list for both GTDS 
PPT2 and GTDS PPT2-MDAILY (output data points on a time grid corresponding 
to the POE solutions) 

3. Compare the original POE data points to the data points generated with the best 
fit trajectory (see Ref. 21, Appendix C for a description of the MatLab 
procedures). 

TOPEX DATA 

The data interval for this test is the December 1992 span studied in Ref. 21.  Since 

TOPEX is at an altitude greater than 1300 km, no attempt was made to solve for drag 

parameters.  Results for a fit span length slightly less than five (5) days are presented in Table 

14.  In this case, the Tesseral M-daily portion of the PPT2-MDAILY theory was configured to use 

the 12 x 12 portion of the WGS-72 geopotential. 
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Table 14.  TOPEX POE Test Case:  PPT2/PPT2-MDAILY DC Results  

Parameter GTDS PPT2 (Original) GTDS PPT2-MDAILY 

Run Time n/a n/a 

DC RMS 394.4 m 162.965 m 

DC Iterations 6 4 

Semimajor Axis σ 1.3 cm 0.52 cm 

Side by side comparisons between PPT2 and PPT2-MDAILY are given in Figures 4 

through 9 for several parameters: 

• radial differences Vs the POE 

• cross track differences Vs the POE 

• along track differences Vs the POE 

• semi major axis/eccentricity differences Vs the POE 

• inclination/node differences Vs the POE 

• argument of latitude differences Vs the POE 
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Figure 4.  TOPEX Radial Differences vs. POE (PPT2 and PPT2-MDAILY) 
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Figure 5.  TOPEX Cross Track Differences vs. POE (PPT2 and PPT2-MDAILY) 
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Figure 6.  TOPEX Along Track Differences vs. POE (PPT2 and PPT2-MDAILY) 
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Figure 7.  TOPEX Semi major axis/ecc Differences vs. POE (PPT2 and PPT2-MDAILY) 

35 



0 200 400 600 800 1000
−2

−1

0

1

2

x 10
−3 1992 Topex Inclination Fit Evaluation

P
O

E
 −

 O
R

B
1 

(d
eg

s)

Time (in 6 minutes intervals)

0 200 400 600 800 1000
−3

−2

−1

0

1

2

x 10
−3 1992 Topex Longitude of the Ascending Node Fit Evaluation

P
O

E
 −

 O
R

B
1 

(d
eg

s)

Time (in 6 minutes intervals)

0 200 400 600 800 1000 1200

−5

0

5

10

x 10
−4 1992 TOPEX Inclination Fit Evaluation

P
O

E
 −

 O
R

B
1 

(d
eg

s)

Time (in 6 minutes intervals)

0 200 400 600 800 1000 1200

−2

−1

0

1

2

x 10
−3 1992 TOPEX Longitude of the Ascending Node Fit Evaluation

P
O

E
 −

 O
R

B
1 

(d
eg

s)

Time (in 6 minutes intervals)  

Figure 8.  TOPEX inclination/node Differences vs. POE (PPT2 and PPT2-MDAILY) 
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Figure 9.  TOPEX argument of latitude Differences vs. POE (PPT2 and PPT2-MDAILY) 

Almost all of the plots demonstrate the improved accuracy of PPT2-MDAILY with the DC 

RMS being reduced from nearly 395 m to about 163 m (Table 14).  We note also that 

convergence is achieved in a smaller number of iterations.  The reduction of the tesseral m-daily 

signature in PPT2 plots makes the systematic nature of the remaining residual more apparent.  

The cross track and along track position difference plots, as well as the inclination, LAN, and 

argument of latitude element difference plots all demonstrate this phenomena.  The clear 

secular/long-periodic signature in the inclination and LAN plots supports consideration of further 
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improvements to that portion of the theory.  Review of the GTDS Compare plots produced by 

simulated data Test Case 6 (Table 7) suggests that at least a portion of the remaining PPT2-

MDAILY LAN difference in Figure 8 is due to unmodeled zonal secular/long period motion.  

Finally, the semi major axis plots (Figure 7) are unchanged with PPT2-MDAILY;  this is to be 

expected because (from analytical considerations) the tesseral m-daily terms cause no periodic 

motion in the semi major axis.  These semi major axis residuals are due in part to the unmodeled 

tesseral linear combination terms [see plots associated with simulated data Test Case 3 (Table 

6)]. 

TAOS DATA 

in Table 15.  Additional experiments with shorter fit spans are in progress at the time of 

this draft. 

The data interval for this test is 28 May to 2 June 1994, during which the atmosphere is 

moderately disturbed (average Kp value of 4).  Since TAOS is at a much lower altitude than 

TOPEX (roughly 500 km), the PPT2 and PPT2 M-DAILY solve-for vectors included the drag 

parameter. M-daily terms through degree and order 12 were exercised in the development of the 

Fourier coefficients for the short periodic effects.  Results for a four day fit span length are 

presented 

37 



Table 15.  TAOS POE Test Case:  PPT2/PPT2-MDAILY DC Results 

Parameter GTDS PPT2 (Original) GTDS PPT2-MDAILY 

Run Time n/a n/a 

DC RMS 626.99 m 144.99 m 

DC Iterations 5 4 

Semimajor Axis σ 5.77 cm 1.33 cm 

M2 0.3616D-8 0.3648D-8 

M2 σ 0.198D-10 0.457D-11 

M3 n/a n/a 

M3 σ n/a n/a 

 

Side by side comparisons between PPT2 and PPT2-MDAILY are given in Figures 10 

through 15 for the following parameters: 

• radial differences Vs the POE 

• cross track differences Vs the POE 

• along track differences Vs the POE 

• semi major axis/eccentricity differences Vs the POE 

• inclination/node differences Vs the POE 

• argument of latitude differences Vs the POE 
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Figure 10.  TAOS Radial Differences vs. POE (PPT2 and PPT2-MDAILY) 
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Figure 11.  TAOS Cross Track Differences vs. POE (PPT2 and PPT2-MDAILY) 
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Figure 12.  TAOS Along Track Differences vs. POE (PPT2 and PPT2-MDAILY) 
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Figure 13  TAOS Semi major axis/ecc Differences vs. POE (PPT2 and PPT2-MDAILY) 
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Figure 14.  TAOS inclination/node Differences vs. POE (PPT2 and PPT2-MDAILY) 
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Figure 15.  TAOS argument of latitude Differences vs. POE (PPT2 and PPT2-MDAILY) 
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The primary observations from the TOPEX data also apply to the TAOS results given in 

Figures 10 to 15: 

• almost all the PPT2-MDAILY plots demonstrate improved accuracy vs. PPT2 

• the remaining PPT2-MDAILY residuals have a more systematic structure 

• the a/e plots (Figure 13) exhibit high frequency residuals in part due to tesseral 
linear combination terms 

• the PPT2-MDAILY DC converges in a smaller number of iterations 

Uniquely with TAOS, it is observed that: 

• the PPT2 m-dailies have a larger along track magnitude with TAOS than with 
TOPEX 

• the along track PPT2-MDAILY position residuals (Figures 12 and 15) exhibit a 
less systematic variation than those for TOPEX (Figures 6 and 9) perhaps 
reflecting the disturbed atmosphere conditions 

• the sigma for the M2 drag solve-for parameter is much smaller for PPT2-MDAILY 
than for PPT2 

 

CONCLUSIONS AND FUTURE WORK 

The Draper Semianalytic Satellite Theory's tesseral m-daily model has been successfully 

attached to the GTDS version of PPT2.  Testing of the GTDS PPT2-MDAILY theory against both 

simulated data (generated by DSST semianalytic and Cowell special perturbation techniques) 

and real data (in the form of TOPEX and TAOS POE solutions) provides accuracy improvements 

of several hundred meters as compared to the current operational version of PPT2.  In addition, 

12 and 24 hour frequency oscillations which are highly visible in residual plots comparing 

trajectories of PPT2 least squares fits to high accuracy POE solutions are removed with the 

inclusion of the tesseral m-daily terms.   
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There are opportunities for further enhancement of the PPT2-MDAILY theory.  

Specifically, two classes of terms have the potential to further improve the accuracy: 

• secular and long periodic terms due to the zonal harmonics that are presently 
unmodeled (J6 and above) 

• tesseral linear combination short periodic terms 

Inclusion of the zonal terms would be aided by the availability of a recursive form of 

Brouwer's core algorithms for the secular and long-periodic motion.  For the tesseral linear 

combination short periodic terms, there is already a recursive model available from the DSST 

development (Ref. 12).  The interface between PPT2 and the tesseral linear combination terms 

would employ much of the capability already developed for the tesseral m-dailies. 

So far we have focused on enhancing the capabilities of PPT2.  However, there are other 

'operational' implementations of the Brouwer and Brouwer-Lyddane theories that might benefit 

from this approach.  The GP4 theory (Ref. 3) and the HANDE theory (Ref. 18) are two examples.  

The development of enhanced GP theories is compatible with the idea of an 'open' space 

object element set catalog that could support both long period predictions with the DSST as well 

as the usual short arc GP operations.  Such an 'open' space object catalog might be quite useful 

in an environment with increased numbers of LEO payloads. 
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