
Database Data Loading for Orkit
Extend Orekit with database support to reap the benifits of modern

database technology.

Bob Reynders

1 Problem Description

The problem with the current data-loading mechanism is that it is hard to scale (text
files) and that a lot of pre-processing is duplicated (parsed information is not stored).
A solution would be to stored parsed datasets in a (scalable) database, to do this the
existing design should be modified to support database loaders.

Additionally, removing the constraint on data loading for the factory classes consists
of exposing a proper API with enough power to (1) remove current data, (2) add new
data or (3) reload data.

2 Project Goals

My project goals for this SOCIS task would be:

• Implement an application that uses the existing Orekit features to parse raw
datasets and store the results in a database.

• Add support to the existing Orekit feature set to load data from the aforementioned
database.

• Extend the current API to support the reloading of data in factories.

3 Implementation

The first stage of implementation will only support persistent EOPEntrys. This docu-
ment will focus on two main design decisions for implementing persistence, one towards
(Open) JPA1 and the other towards Apache DBUtils2.

1Instead of the EclipseLink implementation I mentioned earlier we can use the Apache implementation
for easier licensing http://openjpa.apache.org/

2http://commons.apache.org/proper/commons-dbutils/

1



Figure 1: Data handling (https://www.orekit.org/forge/projects/orekit/wiki/Configuration)

3.1 Common Design Description

Both designs are loosely tiered, i.e., there are upper tiers that provide great abstraction
and lower tiers that go towards a more fine grained persistence API.

The first tier is already in place for the most part, it contains the existing Orekit
classes such as EOPHistoryLoader implementations, EOPEntry, etc. Additional classes
that can be seen as upper tier are the persister classes such as the EOPHistoryPersister
and the database-dependent implementations of EOPHistoryLoader.

The second tier consists of the data access objects, in this case the EOPHistoryDAO.
Its purpose is to create a layer of abstraction between the actual persistence objects and
the access thereof. It will abstract over the lower-level persistence APIs.

The last tier is built up from the persistence classes. In this tier the chosen persistence
API is used.

DB Scheme The database scheme that backs the entry storage is shown in Figure 2
and should be self-explanatory.

EOPHistoryPersister Is responsible for (1) loading EOPEntrys using several EOPHis-
toryLoader implementations and (2) persisting these entries.

2



Figure 2: Database Scheme

3



Remarks EOPHistoryLoader has the fillHistory method defined which takes 2 param-
eters, a converter and a history set. The converter is used during the actual reading
of the EOPEntrys and hence will not be used in persistent implementation. I think I
might be missing something here, can someone confirm this? If this is the case I suggest
moving the converter to the history loader constructor.

3.2 JPA

The JPA model shown in Figure 3 focuses on abstracting away the JPA EntityManager
usage and implementing specific entity objects that are purely used for persistence.

EOPHistoryDAO Uses EntityManagers to persist and retrieve EOPEntry instances
through the EntityManagerFactoryManager.

EOPEntryEntity Is a class that is annotated with the required JPA annotations so
that it can be managed and persisted without touching actual SQL.

AbsoluteDateEntity Is another entity with the sole purpose of being part of the EOPEn-
tryEntity.

3.3 DBUtils

The DBUtils model shown in Figure 4 uses the DBUtils classes provided to abstract
away from the JDBC options.

EOPHistoryDAO Uses QueryRunners and ResultHandlers to persist and retrieve EOPEn-
try instances through the DataSourceManager.

DataSourceManager Manages the actual datasource.

EOPEntryResultHandler Is an implementation that can convert from ResultLists to
actual EOPEntrys.

AbsoluteDateResultHandler Is an implementation that can convert from ResultLists
to actual AbsoluteDates.

4 Conclusion

I think the main advantage of JPA is that future Java programmers are familiar with it.
It is pretty elegant to have your database representation available as Java classes in the
form of entities but this arguably takes away from the freedom.

Where DBUtils lacks in ease of use it makes up in fine grained control of SQL queries.
If the Orekit team wants to stay closer to SQL I recommend going with this.

4



Figure 3: JPA EOP Database Model

5



Figure 4: DBUtils EOP Database Model

6



I left out the entire discussion and information I posted earlier about the source of
data in the form of inputstream digests. It will be easier to add and explain as an
additional feature and I recognise my mistake of tunnel-visioning on it from the start.

Future I think its in our best interest if I can start programming as soon as possible.
If I had to pick personally I would go for the JPA implementation because I personally
have more experience with JPA. I’m a person who works best when coding and I don’t
mind altering code to reflect design changes so moving towards DBUtils in the future
will not be a problem.

7


