
Rev 24

5 Aug 2010

1

OPEN SOURCE SOFTWARE SUITE FOR SPACE SITUATIONAL AWARENESS AND

SPACE OBJECT CATALOG WORK

EUROPEAN SPACE ASTRONOMY CENTRE (ESA/ESAC), MADRID, SPAIN

3 – 6 MAY 2010

Paul J. Cefola
 (1)

, Brian Weeden
 (2)

, Creon Levit
 (3)

(1)
Consultant, 59 Harness Lane, Sudbury Massachusetts 01776, USA, (also Adjunct Faculty, University at Buffalo,

SUNY), Email: paulcefo@buffalo.edu

(2)
Technical Advisor on Space Security and Sustainability Issues, Secure World Foundation, 5610 Place Bayard,

Brossard, Quebec, J4Z 2A5, Canada, Email: bweeden@swfound.org

(3)
Chief Scientist for Projects and Programs, NASA Ames Research Center, Moffet Field, California 94035, USA,

Email: creon.levit@nasa.gov

ABSTRACT

The accuracy of the orbital data products used for

space situational awareness is affected by the evolution

of the sensors collecting the data, the knowledge and

control of the errors in the sensor network, the

knowledge of the space environment, the available

computing resources (both hardware and software),

and the number of space objects to be monitored.

While the number of objects in orbit has grown

significantly over the last three decades, the quality and

quantity of the orbital data products, particularly those

available to non-government space operators has not

kept pace. Further, operational analysis of key issues

is still in flux. The Iridium/Cosmos collision event in

2009 demonstrated that there is a lack of data and tools

available to all space actors needed to avoid major

accidents. Additionally, the event demonstrated that

the publicly available Two Line Element (TLE) sets

are not sufficiently accurate to detect and prevent such

incidents.

Open source software is a relatively new trend in

software development that rests on the principles of

open collaboration. Unlike closed source software, the

source code behind the software is publicly released

and anyone is free to modify it. These modifications

can become a completely new project or be integrated

into the mainline development. Critically for the space

surveillance application, software developed using

open source software methods provides greater

transparency, knowledge of what’s inside the “black

box”, flexibility, can reduce development costs, and

can be used globally with fewer restrictions in regard

to export controls and intellectual property restrictions.

The focus of this paper is on the software aspects of

moving the current legacy space situational awareness

capabilities forward via an open source paradigm, so

that all spacecraft operators have access to the basic

tools needed to operate safely and efficiently in space.

1. INTRODUCTION

The fundamental requirement of space situational

awareness (SSA) is to provide actionable knowledge

about events and activities in Earth orbit. A key

component of SSA is space surveillance -- determining

the present position of space objects and the ability to

predict their future orbital paths. Related requirements

are the detection of new space objects, the detection of

spacecraft maneuvres, and the prediction of when one

space object may interfere with another space object.

Such interference may be physical in nature such as the

February 2009 collision between the Iridium 33 and

Cosmos 2251 or electromagnetic in nature such as the

Galaxy 15 anomaly
1
.

All of these requirements require space object

ephemeris data; an Ephemeris is a table of predicted

position and velocity at a sequence of times, usually at

equal time intervals. The ephemeris data is generated

by fitting mathematical models to tracking data. The

tracking data includes data from radar and optical

sensors. The radar sensors include phased array radars,

dish radars, and fences. The orbit fitting process

makes use of the residual between the actual

measurement at time t and the computed measurement
2

at time t tδ+ where the quantity tδ is the timing bias.

1 For a more detailed description of the Galaxy 15 situation,

see “Dealing With Galaxy 15: Zombiesats and On-orbit

Servicing”, The Space Review, 24 May 2010, online at

http://thespacereview.com/article1634/1
2 The computed measurements require an a priori estimate of

the state vector.

Rev 24

5 Aug 2010

2

Early in the space age, national governments were the

primary developers and operators of systems for space

surveillance. In the U.S., the initial systems were the

Navy SPASUR (Space Surveillance) System and the

Air Force Interim National Space Surveillance Control

Center (INSSCC).

From an astrodynamic algorithmic point of view, the

US systems rapidly converged on a specification

including analytical orbit propagators based on the

Brouwer theory and a numerical orbit propagator based

on an arbitrary geopotential model. The orbit

determination process was based on the batch weighted

least squares method adapted to nonlinear dynamical

models.

U.S. SSA systems also made the assumption of

centralized processing: all the observations were

brought to a data processing facility in Colorado

Springs, CO. The Navy data processing facility in

Dahlgren, VA, processed the raw observations from

the Navy Fence (now the Air Force Space Surveillance

Fence) and functioned as backup for the space

surveillance operations in Colorado Springs.

Over the time period from 1957 to present, two major

trends have impacted SSA. The first is the

continuously increasing number of objects in space

(Figs. 1 & 2). The phrase ‘trackable objects’ (Fig. 1)

refers to 10 cm objects for LEO and 1 m objects for

GEO.

Figure 1. Evolution of the number of trackable, on-

orbit objects [1]

Fig. 2 gives a projection of the number of currently

trackable space objects two centuries into the future

under a pessimistic assumption with respect to post-

mission disposal.

In fact, if we think about object sizes down to 2 cm, the

number of objects currently in space is on the order of

hundreds of thousands.

The second major trend is the evolution of performance

in scientific computing on the large scale. The life

span of modern computing overlaps the space age.

Fig. 3 gives the performance of various computers of

the last five decades that could have been called the

‘supercomputers’ of their time. On the average, there

is an increase in performance of two orders of

magnitude every decade.

Figure 2. Projection of the growth of > 10 cm resident

space objects including Fengyun-1C ASAT and

Iridium/Cosmos collisions if post-mission disposal

measures are not implemented [2]

Figure 3. Moore’s Law and peak performance of

various computers over time [3]

In addition to improvements in computer hardware

improvements, there has been continuous improvement

in the software development environment (particularly

configuration management tools) and the operating

systems for large scale projects.

The availability of improved computer technology

together with the increase in the number of objects in

space and evolution in the desired accuracy of the

space catalogue has led to the almost continuous

development of new U.S. SSA systems, with little

actual delivery of capabilities to the end user. The

current developmental system is the JSpOC Mission

Rev 24

5 Aug 2010

3

System (JMS) being developed by the U.S. Air Force

Space Command for the Joint Space Operations Center

(JSpOC) located at Vandenberg AFB, CA. The JMS is

slated to replace the current SPADOC 4C and

CAVENet systems.

Development of SSA systems by the other major

space-faring nations, particularly Russia and the FSU,

also has resulted in significant capability. However,

different levels of sensor, analytical, computer, and

communications capabilities resulted in different SSA

system architectures [4] and algorithms [5].

There have been limited efforts to compare the US and

Russia catalogs [6][7].

While the current US developmental system is based

on improved computer technology, the algorithmic

content of the system as of early 2009 was the same

General Perturbations (GP4) analytical orbit

propagator, numerical integration-based Special

Perturbations orbit propagator, and batch least squares

orbit determination process originally put in use 35-

years earlier (1975).

The following list gives capabilities that are not

addressed in the current operational system used by the

JSpOC:

• Observation compression concepts are not

available for either radar or optical sensors

• Fast and accurate orbit propagator concepts are

not available

• Fast and accurate state transition matrix

concepts are not available

• Kalman Filter-based orbit estimation concepts

are not available

• Kalman Filter-based sensor calibration

processes for are not available

• Realistic process noise and measurement error

models are not employed

• The orbit uncertainty as represented by and

propagated by the orbit determination systems is

not well understood

• The operational processes developed by the AF

Space Command for real time tracking of the

atmospheric density variations are limited and

narrow in scope

• There is no process for re-acquiring a significant

portion of the catalog, as would be required in

the event of a major geo-magnetic storm (such

as 1989)

• There is no mathematically ‘strong’ theory for

the general concept of catalog maintenance

including both the detection and tracking

processes, either for LEO, GEO, or HEO

• There is no concept for taking advantage of

frameworks that can be massively parallelized

on distributed memory clusters.

• There is no web services based architecture for

SSA

• There is no capability for utilizing the very large

datasets that will result from larger catalogs and

improved sensors3

• There is little cooperative, positive relationship

between the USG SSA community and the

broader astrodynamics research community

The current paper is part of a larger strategy to address

the SSA problem via an Open Source Software

paradigm. In [8], Weeden and Cefola address

“Mathematical Algorithms for Space Situational

Awareness: History and Future Development.” In [9],

Weeden, Cefola, and Sankaran will address “Global

Space Situational Awareness Sensors.”

The roadmap of the current paper is as follows. In

Section 2, we provide an overview of the problem of

adapting SSA tools to a modern distributed computing

infrastructure. In Section 3, we consider rewriting the

SSA tools in a language platform employing object-

oriented and component technologies such as

C++/CORBA. In Section 4, we consider the more

moderate approach of non-invasive encapsulation of

legacy binaries. The configuration issues with legacy

codes are shifted from hand-edited files and scripts to

automatically generated GUIs. In Section 5, we give a

specific plan for creating a Web 2.0 architecture for

SSA.

2. APPROACHES FOR DEALING WITH

SOFTWARE LEGACY

Computer programs for the determination of the orbits

of artificial satellites and space debris objects require

models from several disciplines:

• Nonlinear estimation

• Measurement modeling

• Force modeling

3 We assume that the SSN will be improved both

qualitatively and quantitatively.

Rev 24

5 Aug 2010

4

• Numerical analysis

Such programs are generally complicated with several

hundreds or thousands of modules. These programs

tend to be written in Fortran 77 because that was the

language of choice when the development of these

programs started. Table 1[10] gives a list of OD

programs with active development communities and

recent enhancements. These programs tend to have

very long lifetimes. Major development efforts were

accomplished in the 60s and 70s when the state of art

in software development environments was not

advanced.

Table 1. Organization-specific Orbit Propagator and Determination Programs and Applications [10]

We note that the SPADOC and CAVENet (ASW)

systems are included in Table 1.

The systems listed in Table 1 taken together are the

Rev 24

5 Aug 2010

5

starting point for the Open Source Software for SSA

project.

When we consider transformation of legacy computer

programs with significant scientific computing

requirements to a modern distributed computing

infrastructure, there are two major options: Migration

and Encapsulation [11].

Migration refers to rewriting all the applications in a

language platform employing object-oriented and

component technologies such as C++/CORBA [12].

The migration approach is costly in terms of

programming effort and accounting for all the

evolutionary work done to date.

Encapsulation is an alternative to migration. A non-

invasive approach to encapsulation is to employ the

legacy binaries in predefined (but configurable)

workflows with all the data exchange between binaries

continuing to take place through file I/O [11]. This way

of working with legacy codes reduces to devising an

extensible encapsulation of the software components

that treats them as black boxes with a set of

inputs/outputs and a set of valid types and ranges of

compile-time and run-time parameters [11].

3. MIGRATION

Our plan is to adapt key SSA algorithms to a modern

distributed computing environment by rewriting the

applications in an object-oriented language platform

such as C++ [12].

The SSA algorithms to be considered include:

• Observation compression

• Orbit Propagators

• State Transition matrix

• Improved nonlinear Kalman Filters

• Realistic process noise

• Atmosphere density variations

• Observation data association

• Observation data simulation

The objective of this effort is object-oriented programs

written in a modern language such as C++. We intend

to include a variety of algorithmic approaches for each

of these functions. For example, for the orbit

propagator, we plan to include:

• Numerical Integration (Special

Perturbations) with high degree and

order geopotential and modern

atmosphere density models

• DSST (Semi-analytical Satellite

Theory) [13] with high degree and

order geopotential and modern

atmosphere density models

• Brouwer-Lyddane (General

Perturbations) [14]

• NORAD GP (SGP, SGP4, SGP8) [15]

(with tesseral m-daily option)

• NORAD HANDE [16] (with tesseral

m-daily option)

• NAVSPASUR PPT [17] (with tesseral

m-daily option)

• Russian A and AP (GP) [5]

• Russian NA Numerical-Analytical

with improved accuracy features as in

the AP theory [5]

For orbit determination, we plan to include:

• Batch (mean element estimation as an

option)

• Extended Kalman Filter (mean

element estimation as an option) [18]

• Modern Filters (mean element

estimation as an option) [19]

The intent is to allow a wide range of orbit

determination comparison studies.

To clarify the issues in the migration project, we are

undertaking a demonstration task:

• Migration of the Standalone Draper Semi-

analytical Satellite Theory (DSST) from

Fortran 77 to Object-Oriented C++

As part of this effort, we plan to study the application of

object-oriented design principles in the Generalized

Mission Analysis Tool (GMAT) [20] program.

The plan is to accomplish this demonstration task using

a modern Graphical Server with multiple CPUs and

graphical CPUs. We will be able to study the

parallelization of the semi-analytical theory using

OpenMP [21] for CPUs and Cuda for GPUs [22].

4. ENCAPSULATION

The orbit propagator and orbit determination programs

listed in Table 1 represent a tremendous investment in

resources for the respective organizations. These

Rev 24

5 Aug 2010

6

programs tend to be extremely long-lived. Typically,

the development started as early as 1970 on mainframe

computers and these programs have been ported to

multiple additional generations of computers:

• 32-bit minicomputers (such as the VAX)

• Workstations

• Micro-computers

Many of these programs were coded in Fortran and

were revised by different engineering teams. As time

progressed, difficulty often arose when an attempt was

made to port the software, make significant

improvements, or add new features.

This was particularly frustrating with the availability of

significant new software technology (such as object-

oriented design) and the new hardware technology (such

as multi-core, multi-thread machines).

Figure 4. Personal Supercomputer Design (2010)

Such considerations lead directly to the consideration of

migration and encapsulation. We have discussed

migration previously.

The software legacy issue is not unique to the orbit

propagation and orbit determination communities. The

field of interdisciplinary ocean prediction systems is

another example of a field that experiences the software

legacy issue [11].

A non-invasive approach to encapsulation is to keep

employing the legacy binaries in predefined (but

configurable) workflows with all data exchange

between binaries continuing to take place through file

I/O [11]. The binaries configuration however is shifted

from hand-edited files and scripts to automatically

generated GUIs. This way of working with legacy

codes reduces to devising an extensible encapsulation of

the software components (as binaries) that treats them as

black boxes with a set of inputs/outputs and a set of

valid types and ranges of compile-time and run-time

parameters. The advent of XML provides a standards-

based way to accomplish this. XML describes data

through the use of custom tags thus eliminating the need

to conform to a specific programming structure and

offering the possibility to integrate legacy software with

new technology.

The ocean prediction community has developed

software tools for addressing the non-invasive

encapsulation problem [23].

We propose to extend non-invasive encapsulation

techniques to significant SSA applications that will not

be rewritten.

To clarify the issues in encapsulation, we are

undertaking a demonstration task:

• Non-invasive encapsulation of the Linux

GTDS R&D Orbit Determination system using

LCML and LEGEND [23]

The 2010 version of Linux GTDS with expanded sensor

modeling will be employed. The source code, makefile,

and keyword descriptions will be inputs to the

encapsulation process. We hope to undertake this

demonstration using a modern Graphical Server with

multiple CPUs and graphical CPUs.

5. WEB 2.0 ARCHITECTURE FOR SSA

Our goal is make international Web services-based tools

for Space Situational Awareness and Space Traffic

Management that are freely available to all satellite

operators and others who need to operate safely and

efficiently in space. Thus a user sitting anywhere in the

world would be able to operate on his own ‘data’ via the

web. ‘Data’ might range from a nominal orbit or

constellation for which the user was trying to

understand the long term motion or to the raw

observations (range, azimuth, elevation, range-rate,

right ascension, and declination) at multiple times which

the user was trying to filter to create an element set.

The user would be able to operate on his data with

algorithms and software that were transparent to him.

A more specific expression of the goal is to create a

Web 2.0 architecture for a SSA service based on the

human-provided services (HPS) paradigm [24].

To clarify the issues in this part of the project, we

propose a demonstration task to create an initial design

of the Web services-based architecture for SSA

6. CONCLUSIONS

Overall, we have three major technical goals for our

project:

1. To adapt key algorithms to a modern

distributed computing environment by

Rev 24

5 Aug 2010

7

rewriting the applications in a language

platform object-oriented and component

technologies such as C++/CORBA [C]

2. To extend non-invasive encapsulation

techniques to significant SSA applications that

we don’t rewrite

3. To create a Web 2.0 architecture for SSA based

on the human-provided services (HPS)

paradigm.

To develop this new SSA capability, we intend to

develop an Open Source Software project following the

insight of Karl Fogel [25].

To clarify the issues in the project, we have suggested

three demonstration tasks:

7. ACKNOWLEDGEMENT

The authors would like to acknowledge our co-workers

for their support during the technical work described in

this paper. Particularly, we would like to acknowledge

Mr. Bill Robertson (Technical Staff Emeritus at the

Draper Laboratory) for many useful discussions of the

early days of space surveillance (INSSCC, 496L, and

SPADATS). We also wish to acknowledge several

useful discussions with Dave Vallado (Center for Space

Standards and Innovation, Colorado Springs).

The authors would like to acknowledge the

representatives of the Space Surveillance community in

both the USA and in Russia for supporting the USA-

Russia Space Surveillance Workshops. These

workshops have contributed greatly to the authors’

knowledge of the international SSA.

The first author especially wishes to acknowledge very

useful conversations with Prof. Andrey Nazarenko, Dr.

Z. Khutorovsky, and Dr. V. S. Yurasov.

The first author would also like to acknowledge his long

time colleagues, Dr. Ron Proulx and Dr. David W.

Carter (at Draper Laboratory), Dr. Mark Slutsky (at

Raytheon Company), and Mr. Zachary Folcik (at MIT

LL).

The authors acknowledge the partial support of the

Secure World Foundation, Superior, Colorado, for this

research.

8. REFERENCES

1. Klinkrad, H., and Johnson, N. L., (2009).

Space Debris Environment Remediation
Concepts, presented at the Fifth European

Conference on Space Debris, Darmstadt,

Germany, March 2009.

2. NASA Orbital Debris Program Office,

Orbital Debris Quarterly News, (2010) 14

(1), 1-2.

3. Dongarra, J. H., Meuer, H., Simon, H., and

Strohmaier, E., (2000) High Performance

Computing Today,

http://icl.cs.utk.edu/publications/pub-

papers/2000/hpc-today.pdf.

4. Khutorovsky, Z. N., (2004), Techniques and

Algorithms for determination of orbits of

LEO satellites using measurements acquired

during one penetration to the field of view of
detection radar, Moscow, 2004.

5. Boikov, V. F., Makhonin, G. N., Testov, A. V.,

Khutorovsky, Z. N., and Shogin, A. N., (2009),

Prediction Procedures Used in Satellite
Catalog Maintenance, Journal of Guidance,

Control, and Dynamics, 32(4), 1179-1199.

6. Aksenov, O., Andreyev, O., Dicky, V.,

Johnson, N., Tretyakov, Yu., Veniaminov, S.,

and Zavaliy, V., (2003), Dynamics of the

Principal Characteristics of the US/Russian

Space Object Catalogs since 1995 to 2002, In

Proceedings of the Fifth U.S.-Russian Space

Surveillance Workshop, 24-27 September

2003, Pulkovo, St. Petersburg, Russia, pp 21-

33.

7. Dicky, V., Johnson, N., Tretyakov, Y.,

Veniaminov, S., Zavaliy, V., and Khutorovsky,

Z., (2000), Comparative Analysis of the

Russian and United States Space Object
Catalogs, In Proceedings of the Fourth U.S.-

Russian Space Surveillance Workshop, 23-27

October 2000, U.S. Naval Observatory,

Washington, DC, USA, pp 389-398.

8. Weeden, B., and Cefola, P., (2010),

Mathematical Algorithms for Space

Situational Awareness: History and Future

Development, presented at the 12
th

International Space Conference of Pacific-

basin Societies (ISCOPS), 27-30 July 1010,

Montreal, Quebec, Canada.

9. Weeden, B., Cefola, P., and Sankaran, J.,

(2010), Global Space Situational Awareness

Sensors, to be presented at the Advanced Maui

Optical and Space Surveillance Technologies

Conference (AMOS), 14-17 September 1010,

Maui, Hawaii.

10. Vetter, J. R., (2007), Fifty Years of Orbit

Determination: Development of Modern

Astrodynamics Methods, Johns Hopkins APL

Technical Digest, 27(3), 239-252.

11. Evangelinos, C., Lermusiaux, P. F. J., Geiger,

Rev 24

5 Aug 2010

8

S. K., Chang, R. C., and Patrikalakis, N. M.,

(2006) Web-enabled Configuration and

Control of Legacy Codes: An Application to
Ocean Modeling, Ocean Modeling, 13, 197-

220.

12. Serrano, M., Carver, D., Geiger, and Montes de

Oca, C., (2002) Reengineering Legacy

Systems for Distributed Environments, The

Journal of Systems and Software, 64, 37-55.

13. Cefola, P., Phillion, D., and Kim, K. S.,

Improving Access to the Semi-Analytical
Satellite Theory, AAS 09-341, presented at

the AAS/AIAA Astrodynamic Specialist

Conference, Pittsburgh, PA, August 2009.

14. Brouwer, D., Solution of the Problem of

Artificial Satellite Theory Without Drag,

Astronomical Journal, Vol. 64, No. 1274, pp

378-397 (November 1959) [work supported by

a contract with the Air Force Cambridge

Research Center, AF 19(604)4137].

15. Hoots, F. R., and Roehrich, R. L., Models for

Propagation of NORAD Element Sets,

Spacetrack Report No. 3, December 1980,

Aerospace Defense Command, USAF.

16. Hoots, F. R., and France, R. G., “An Analytic

Satellite Theory Using Gravity and a

Dynamic Atmosphere”, Celestial Mechanics,

Vol. 40, No. 1, 1987.

17. PPT2: The NAVSPASUR Model of Satellite

Motion, NAVSPASUR Report 92-01, July

1992 [available from Commander,

NAVSPACECOM, 5280 Fourth Street,

Dahlgren, VA 22448-5300; attention: Logistics

and Information Systems Division, Mail Code

N4/6].

18. Taylor, S. P., Semi-analytical Satellite

Theory and Sequential Estimation, Master of

Science Thesis, Department of Mechanical

Engineering, MIT, September 1981 (CSDL-T-

757).

19. Folcik, Z. J., Orbit Determination Using

Modern Filters/Smoothers and Continuous
Thrust Modeling, Master of Science Thesis,

Department of Aeronautics and Astronautics,

MIT, June 2008 (Lincoln Laboratory research

project).

20. Conway, D. J., General Mission Analysis

Tool (GMAT) Architectural Specification
(Draft version), Thinking Systems, Inc., 2007

21. Mattson, T., and Meadows, L., A “Hands-on”

Introduction to OpenMP, tutorial presented

at the SC08 conference, November 2008,

Austin, TX, accessed at

http://www.openmp.org/mp-documents/omp-

hands-on-SC08.pdf , July 30, 2010

22. Nickolls, J., and Dally, W. J., The GPU

Computing Era, published by the IEEE

Computer Society, 2010, accessed at

http://www.computer.org/portal/c/document_li

brary/get_file?uuid=6fefff2f-cf51-487b-b744-

18ac6f3872ac&groupId=53319, July 30, 2010

23. Geiger, S. K., Legacy Computing Markup

Language (LCML) and LEGEND – LEGacy

Encapsulation for Network Distribution,
Master of Science Thesis, Department of

Ocean Engineering, MIT, June 2004.

24. Schall, Daniel, Human Interactions in Mixed

Systems – Architecture, Protocols, and
Algorithms, PhD Dissertation, Technical

University Vienna, January 2009.

25. Fogel, Karl, Producing Open Source

Software: How to Run a Successful Free
Software Project, 2005, accessed at

http://producingoss.com/, 28 July 2010.

