DSSTKalmanModel.java

  1. /* Copyright 2002-2020 CS Group
  2.  * Licensed to CS Group (CS) under one or more
  3.  * contributor license agreements.  See the NOTICE file distributed with
  4.  * this work for additional information regarding copyright ownership.
  5.  * CS licenses this file to You under the Apache License, Version 2.0
  6.  * (the "License"); you may not use this file except in compliance with
  7.  * the License.  You may obtain a copy of the License at
  8.  *
  9.  *   http://www.apache.org/licenses/LICENSE-2.0
  10.  *
  11.  * Unless required by applicable law or agreed to in writing, software
  12.  * distributed under the License is distributed on an "AS IS" BASIS,
  13.  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  14.  * See the License for the specific language governing permissions and
  15.  * limitations under the License.
  16.  */
  17. package org.orekit.estimation.sequential;

  18. import java.util.ArrayList;
  19. import java.util.Arrays;
  20. import java.util.Comparator;
  21. import java.util.HashMap;
  22. import java.util.List;
  23. import java.util.Map;

  24. import org.hipparchus.filtering.kalman.ProcessEstimate;
  25. import org.hipparchus.filtering.kalman.extended.NonLinearEvolution;
  26. import org.hipparchus.linear.Array2DRowRealMatrix;
  27. import org.hipparchus.linear.ArrayRealVector;
  28. import org.hipparchus.linear.MatrixUtils;
  29. import org.hipparchus.linear.RealMatrix;
  30. import org.hipparchus.linear.RealVector;
  31. import org.hipparchus.util.FastMath;
  32. import org.orekit.errors.OrekitException;
  33. import org.orekit.errors.OrekitMessages;
  34. import org.orekit.estimation.measurements.EstimatedMeasurement;
  35. import org.orekit.estimation.measurements.EstimationModifier;
  36. import org.orekit.estimation.measurements.ObservableSatellite;
  37. import org.orekit.estimation.measurements.ObservedMeasurement;
  38. import org.orekit.estimation.measurements.modifiers.DynamicOutlierFilter;
  39. import org.orekit.orbits.Orbit;
  40. import org.orekit.propagation.PropagationType;
  41. import org.orekit.propagation.SpacecraftState;
  42. import org.orekit.propagation.conversion.IntegratedPropagatorBuilder;
  43. import org.orekit.propagation.semianalytical.dsst.DSSTJacobiansMapper;
  44. import org.orekit.propagation.semianalytical.dsst.DSSTPartialDerivativesEquations;
  45. import org.orekit.propagation.semianalytical.dsst.DSSTPropagator;
  46. import org.orekit.time.AbsoluteDate;
  47. import org.orekit.utils.ParameterDriver;
  48. import org.orekit.utils.ParameterDriversList;
  49. import org.orekit.utils.ParameterDriversList.DelegatingDriver;

  50. /** Class defining the process model dynamics to use with a {@link KalmanEstimator}.
  51.  * <p>
  52.  * This class is an adaption of the {@link KalmanModel} class
  53.  * but for the {@link DSSTPropagator DSST propagator}.
  54.  * </p>
  55.  * @author Romain Gerbaud
  56.  * @author Maxime Journot
  57.  * @author Bryan Cazabonne
  58.  * @since 10.0
  59.  */
  60. public class DSSTKalmanModel implements KalmanODModel {

  61.     /** Builders for propagators. */
  62.     private final List<IntegratedPropagatorBuilder> builders;

  63.     /** Estimated orbital parameters. */
  64.     private final ParameterDriversList allEstimatedOrbitalParameters;

  65.     /** Estimated propagation drivers. */
  66.     private final ParameterDriversList allEstimatedPropagationParameters;

  67.     /** Per-builder estimated propagation drivers. */
  68.     private final ParameterDriversList[] estimatedPropagationParameters;

  69.     /** Estimated measurements parameters. */
  70.     private final ParameterDriversList estimatedMeasurementsParameters;

  71.     /** Start columns for each estimated orbit. */
  72.     private final int[] orbitsStartColumns;

  73.     /** End columns for each estimated orbit. */
  74.     private final int[] orbitsEndColumns;

  75.     /** Map for measurements parameters columns. */
  76.     private final Map<String, Integer> measurementParameterColumns;

  77.     /** Providers for covariance matrices. */
  78.     private final List<CovarianceMatrixProvider> covarianceMatricesProviders;

  79.     /** Indirection arrays to extract the noise components for estimated parameters. */
  80.     private final int[][] covarianceIndirection;

  81.     /** Scaling factors. */
  82.     private final double[] scale;

  83.     /** Mappers for extracting Jacobians from integrated states. */
  84.     private final DSSTJacobiansMapper[] mappers;

  85.     /** Propagators for the reference trajectories, up to current date. */
  86.     private DSSTPropagator[] referenceTrajectories;

  87.     /** Current corrected estimate. */
  88.     private ProcessEstimate correctedEstimate;

  89.     /** Current number of measurement. */
  90.     private int currentMeasurementNumber;

  91.     /** Reference date. */
  92.     private AbsoluteDate referenceDate;

  93.     /** Current date. */
  94.     private AbsoluteDate currentDate;

  95.     /** Predicted spacecraft states. */
  96.     private SpacecraftState[] predictedSpacecraftStates;

  97.     /** Corrected spacecraft states. */
  98.     private SpacecraftState[] correctedSpacecraftStates;

  99.     /** Predicted measurement. */
  100.     private EstimatedMeasurement<?> predictedMeasurement;

  101.     /** Corrected measurement. */
  102.     private EstimatedMeasurement<?> correctedMeasurement;

  103.     /** Type of the orbit used for the propagation.*/
  104.     private PropagationType propagationType;

  105.     /** Type of the elements used to define the orbital state.*/
  106.     private PropagationType stateType;

  107.     /** Kalman process model constructor (package private).
  108.      * @param propagatorBuilders propagators builders used to evaluate the orbits.
  109.      * @param covarianceMatricesProviders providers for covariance matrices
  110.      * @param estimatedMeasurementParameters measurement parameters to estimate
  111.      * @param propagationType type of the orbit used for the propagation (mean or osculating)
  112.      * @param stateType type of the elements used to define the orbital state (mean or osculating)
  113.      */
  114.     public DSSTKalmanModel(final List<IntegratedPropagatorBuilder> propagatorBuilders,
  115.           final List<CovarianceMatrixProvider> covarianceMatricesProviders,
  116.           final ParameterDriversList estimatedMeasurementParameters,
  117.           final PropagationType propagationType,
  118.           final PropagationType stateType) {

  119.         this.builders                        = propagatorBuilders;
  120.         this.estimatedMeasurementsParameters = estimatedMeasurementParameters;
  121.         this.measurementParameterColumns     = new HashMap<>(estimatedMeasurementsParameters.getDrivers().size());
  122.         this.currentMeasurementNumber        = 0;
  123.         this.referenceDate                   = propagatorBuilders.get(0).getInitialOrbitDate();
  124.         this.currentDate                     = referenceDate;
  125.         this.propagationType                 = propagationType;
  126.         this.stateType                       = stateType;

  127.         final Map<String, Integer> orbitalParameterColumns = new HashMap<>(6 * builders.size());
  128.         orbitsStartColumns      = new int[builders.size()];
  129.         orbitsEndColumns        = new int[builders.size()];
  130.         int columns = 0;
  131.         allEstimatedOrbitalParameters = new ParameterDriversList();
  132.         for (int k = 0; k < builders.size(); ++k) {
  133.             orbitsStartColumns[k] = columns;
  134.             final String suffix = propagatorBuilders.size() > 1 ? "[" + k + "]" : null;
  135.             for (final ParameterDriver driver : builders.get(k).getOrbitalParametersDrivers().getDrivers()) {
  136.                 if (driver.getReferenceDate() == null) {
  137.                     driver.setReferenceDate(currentDate);
  138.                 }
  139.                 if (suffix != null && !driver.getName().endsWith(suffix)) {
  140.                     // we add suffix only conditionally because the method may already have been called
  141.                     // and suffixes may have already been appended
  142.                     driver.setName(driver.getName() + suffix);
  143.                 }
  144.                 if (driver.isSelected()) {
  145.                     allEstimatedOrbitalParameters.add(driver);
  146.                     orbitalParameterColumns.put(driver.getName(), columns++);
  147.                 }
  148.             }
  149.             orbitsEndColumns[k] = columns;
  150.         }

  151.         // Gather all the propagation drivers names in a list
  152.         allEstimatedPropagationParameters = new ParameterDriversList();
  153.         estimatedPropagationParameters    = new ParameterDriversList[builders.size()];
  154.         final List<String> estimatedPropagationParametersNames = new ArrayList<>();
  155.         for (int k = 0; k < builders.size(); ++k) {
  156.             estimatedPropagationParameters[k] = new ParameterDriversList();
  157.             for (final ParameterDriver driver : builders.get(k).getPropagationParametersDrivers().getDrivers()) {
  158.                 if (driver.getReferenceDate() == null) {
  159.                     driver.setReferenceDate(currentDate);
  160.                 }
  161.                 if (driver.isSelected()) {
  162.                     allEstimatedPropagationParameters.add(driver);
  163.                     estimatedPropagationParameters[k].add(driver);
  164.                     final String driverName = driver.getName();
  165.                     // Add the driver name if it has not been added yet
  166.                     if (!estimatedPropagationParametersNames.contains(driverName)) {
  167.                         estimatedPropagationParametersNames.add(driverName);
  168.                     }
  169.                 }
  170.             }
  171.         }
  172.         estimatedPropagationParametersNames.sort(Comparator.naturalOrder());

  173.         // Populate the map of propagation drivers' columns and update the total number of columns
  174.         final Map<String, Integer> propagationParameterColumns = new HashMap<>(estimatedPropagationParametersNames.size());
  175.         for (final String driverName : estimatedPropagationParametersNames) {
  176.             propagationParameterColumns.put(driverName, columns);
  177.             ++columns;
  178.         }

  179.         // Populate the map of measurement drivers' columns and update the total number of columns
  180.         for (final ParameterDriver parameter : estimatedMeasurementsParameters.getDrivers()) {
  181.             if (parameter.getReferenceDate() == null) {
  182.                 parameter.setReferenceDate(currentDate);
  183.             }
  184.             measurementParameterColumns.put(parameter.getName(), columns);
  185.             ++columns;
  186.         }

  187.         // Store providers for process noise matrices
  188.         this.covarianceMatricesProviders = covarianceMatricesProviders;
  189.         this.covarianceIndirection       = new int[covarianceMatricesProviders.size()][columns];
  190.         for (int k = 0; k < covarianceIndirection.length; ++k) {
  191.             final ParameterDriversList orbitDrivers      = builders.get(k).getOrbitalParametersDrivers();
  192.             final ParameterDriversList parametersDrivers = builders.get(k).getPropagationParametersDrivers();
  193.             Arrays.fill(covarianceIndirection[k], -1);
  194.             int i = 0;
  195.             for (final ParameterDriver driver : orbitDrivers.getDrivers()) {
  196.                 final Integer c = orbitalParameterColumns.get(driver.getName());
  197.                 covarianceIndirection[k][i++] = (c == null) ? -1 : c.intValue();
  198.             }
  199.             for (final ParameterDriver driver : parametersDrivers.getDrivers()) {
  200.                 final Integer c = propagationParameterColumns.get(driver.getName());
  201.                 if (c != null) {
  202.                     covarianceIndirection[k][i++] = c.intValue();
  203.                 }
  204.             }
  205.             for (final ParameterDriver driver : estimatedMeasurementParameters.getDrivers()) {
  206.                 final Integer c = measurementParameterColumns.get(driver.getName());
  207.                 if (c != null) {
  208.                     covarianceIndirection[k][i++] = c.intValue();
  209.                 }
  210.             }
  211.         }

  212.         // Compute the scale factors
  213.         this.scale = new double[columns];
  214.         int index = 0;
  215.         for (final ParameterDriver driver : allEstimatedOrbitalParameters.getDrivers()) {
  216.             scale[index++] = driver.getScale();
  217.         }
  218.         for (final ParameterDriver driver : allEstimatedPropagationParameters.getDrivers()) {
  219.             scale[index++] = driver.getScale();
  220.         }
  221.         for (final ParameterDriver driver : estimatedMeasurementsParameters.getDrivers()) {
  222.             scale[index++] = driver.getScale();
  223.         }

  224.         // Build the reference propagators and add their partial derivatives equations implementation
  225.         mappers = new DSSTJacobiansMapper[builders.size()];
  226.         updateReferenceTrajectories(getEstimatedPropagators());
  227.         this.predictedSpacecraftStates = new SpacecraftState[referenceTrajectories.length];
  228.         for (int i = 0; i < predictedSpacecraftStates.length; ++i) {
  229.             predictedSpacecraftStates[i] = referenceTrajectories[i].getInitialState();
  230.         };
  231.         this.correctedSpacecraftStates = predictedSpacecraftStates.clone();

  232.         // Initialize the estimated normalized state and fill its values
  233.         final RealVector correctedState      = MatrixUtils.createRealVector(columns);

  234.         int p = 0;
  235.         for (final ParameterDriver driver : allEstimatedOrbitalParameters.getDrivers()) {
  236.             correctedState.setEntry(p++, driver.getNormalizedValue());
  237.         }
  238.         for (final ParameterDriver driver : allEstimatedPropagationParameters.getDrivers()) {
  239.             correctedState.setEntry(p++, driver.getNormalizedValue());
  240.         }
  241.         for (final ParameterDriver driver : estimatedMeasurementsParameters.getDrivers()) {
  242.             correctedState.setEntry(p++, driver.getNormalizedValue());
  243.         }

  244.         // Set up initial covariance
  245.         final RealMatrix physicalProcessNoise = MatrixUtils.createRealMatrix(columns, columns);
  246.         for (int k = 0; k < covarianceMatricesProviders.size(); ++k) {
  247.             final RealMatrix noiseK = covarianceMatricesProviders.get(k).
  248.                                       getInitialCovarianceMatrix(correctedSpacecraftStates[k]);
  249.             checkDimension(noiseK.getRowDimension(),
  250.                            builders.get(k).getOrbitalParametersDrivers(),
  251.                            builders.get(k).getPropagationParametersDrivers(),
  252.                            estimatedMeasurementsParameters);
  253.             final int[] indK = covarianceIndirection[k];
  254.             for (int i = 0; i < indK.length; ++i) {
  255.                 if (indK[i] >= 0) {
  256.                     for (int j = 0; j < indK.length; ++j) {
  257.                         if (indK[j] >= 0) {
  258.                             physicalProcessNoise.setEntry(indK[i], indK[j], noiseK.getEntry(i, j));
  259.                         }
  260.                     }
  261.                 }
  262.             }

  263.         }
  264.         final RealMatrix correctedCovariance = normalizeCovarianceMatrix(physicalProcessNoise);

  265.         correctedEstimate = new ProcessEstimate(0.0, correctedState, correctedCovariance);

  266.     }

  267.     /** Check dimension.
  268.      * @param dimension dimension to check
  269.      * @param orbitalParameters orbital parameters
  270.      * @param propagationParameters propagation parameters
  271.      * @param measurementParameters measurements parameters
  272.      */
  273.     private void checkDimension(final int dimension,
  274.                                 final ParameterDriversList orbitalParameters,
  275.                                 final ParameterDriversList propagationParameters,
  276.                                 final ParameterDriversList measurementParameters) {

  277.         // count parameters, taking care of counting all orbital parameters
  278.         // regardless of them being estimated or not
  279.         int requiredDimension = orbitalParameters.getNbParams();
  280.         for (final ParameterDriver driver : propagationParameters.getDrivers()) {
  281.             if (driver.isSelected()) {
  282.                 ++requiredDimension;
  283.             }
  284.         }
  285.         for (final ParameterDriver driver : measurementParameters.getDrivers()) {
  286.             if (driver.isSelected()) {
  287.                 ++requiredDimension;
  288.             }
  289.         }

  290.         if (dimension != requiredDimension) {
  291.             // there is a problem, set up an explicit error message
  292.             final StringBuilder builder = new StringBuilder();
  293.             for (final ParameterDriver driver : orbitalParameters.getDrivers()) {
  294.                 if (builder.length() > 0) {
  295.                     builder.append(", ");
  296.                 }
  297.                 builder.append(driver.getName());
  298.             }
  299.             for (final ParameterDriver driver : propagationParameters.getDrivers()) {
  300.                 if (driver.isSelected()) {
  301.                     builder.append(driver.getName());
  302.                 }
  303.             }
  304.             for (final ParameterDriver driver : measurementParameters.getDrivers()) {
  305.                 if (driver.isSelected()) {
  306.                     builder.append(driver.getName());
  307.                 }
  308.             }
  309.             throw new OrekitException(OrekitMessages.DIMENSION_INCONSISTENT_WITH_PARAMETERS,
  310.                                       dimension, builder.toString());
  311.         }

  312.     }

  313.     /** {@inheritDoc} */
  314.     @Override
  315.     public RealMatrix getPhysicalStateTransitionMatrix() {
  316.         //  Un-normalize the state transition matrix (ฯ†) from Hipparchus and return it.
  317.         // ฯ† is an mxm matrix where m = nbOrb + nbPropag + nbMeas
  318.         // For each element [i,j] of normalized ฯ† (ฯ†n), the corresponding physical value is:
  319.         // ฯ†[i,j] = ฯ†n[i,j] * scale[i] / scale[j]

  320.         // Normalized matrix
  321.         final RealMatrix normalizedSTM = correctedEstimate.getStateTransitionMatrix();

  322.         if (normalizedSTM == null) {
  323.             return null;
  324.         } else {
  325.             // Initialize physical matrix
  326.             final int nbParams = normalizedSTM.getRowDimension();
  327.             final RealMatrix physicalSTM = MatrixUtils.createRealMatrix(nbParams, nbParams);

  328.             // Un-normalize the matrix
  329.             for (int i = 0; i < nbParams; ++i) {
  330.                 for (int j = 0; j < nbParams; ++j) {
  331.                     physicalSTM.setEntry(i, j,
  332.                                          normalizedSTM.getEntry(i, j) * scale[i] / scale[j]);
  333.                 }
  334.             }
  335.             return physicalSTM;
  336.         }
  337.     }

  338.     /** {@inheritDoc} */
  339.     @Override
  340.     public RealMatrix getPhysicalMeasurementJacobian() {
  341.         // Un-normalize the measurement matrix (H) from Hipparchus and return it.
  342.         // H is an nxm matrix where:
  343.         //  - m = nbOrb + nbPropag + nbMeas is the number of estimated parameters
  344.         //  - n is the size of the measurement being processed by the filter
  345.         // For each element [i,j] of normalized H (Hn) the corresponding physical value is:
  346.         // H[i,j] = Hn[i,j] * ฯƒ[i] / scale[j]

  347.         // Normalized matrix
  348.         final RealMatrix normalizedH = correctedEstimate.getMeasurementJacobian();

  349.         if (normalizedH == null) {
  350.             return null;
  351.         } else {
  352.             // Get current measurement sigmas
  353.             final double[] sigmas = correctedMeasurement.getObservedMeasurement().getTheoreticalStandardDeviation();

  354.             // Initialize physical matrix
  355.             final int nbLine = normalizedH.getRowDimension();
  356.             final int nbCol  = normalizedH.getColumnDimension();
  357.             final RealMatrix physicalH = MatrixUtils.createRealMatrix(nbLine, nbCol);

  358.             // Un-normalize the matrix
  359.             for (int i = 0; i < nbLine; ++i) {
  360.                 for (int j = 0; j < nbCol; ++j) {
  361.                     physicalH.setEntry(i, j, normalizedH.getEntry(i, j) * sigmas[i] / scale[j]);
  362.                 }
  363.             }
  364.             return physicalH;
  365.         }
  366.     }

  367.     /** {@inheritDoc} */
  368.     @Override
  369.     public RealMatrix getPhysicalInnovationCovarianceMatrix() {
  370.         // Un-normalize the innovation covariance matrix (S) from Hipparchus and return it.
  371.         // S is an nxn matrix where n is the size of the measurement being processed by the filter
  372.         // For each element [i,j] of normalized S (Sn) the corresponding physical value is:
  373.         // S[i,j] = Sn[i,j] * ฯƒ[i] * ฯƒ[j]

  374.         // Normalized matrix
  375.         final RealMatrix normalizedS = correctedEstimate.getInnovationCovariance();

  376.         if (normalizedS == null) {
  377.             return null;
  378.         } else {
  379.             // Get current measurement sigmas
  380.             final double[] sigmas = correctedMeasurement.getObservedMeasurement().getTheoreticalStandardDeviation();

  381.             // Initialize physical matrix
  382.             final int nbMeas = sigmas.length;
  383.             final RealMatrix physicalS = MatrixUtils.createRealMatrix(nbMeas, nbMeas);

  384.             // Un-normalize the matrix
  385.             for (int i = 0; i < nbMeas; ++i) {
  386.                 for (int j = 0; j < nbMeas; ++j) {
  387.                     physicalS.setEntry(i, j, normalizedS.getEntry(i, j) * sigmas[i] *   sigmas[j]);
  388.                 }
  389.             }
  390.             return physicalS;
  391.         }
  392.     }

  393.     /** {@inheritDoc} */
  394.     @Override
  395.     public RealMatrix getPhysicalKalmanGain() {
  396.         // Un-normalize the Kalman gain (K) from Hipparchus and return it.
  397.         // K is an mxn matrix where:
  398.         //  - m = nbOrb + nbPropag + nbMeas is the number of estimated parameters
  399.         //  - n is the size of the measurement being processed by the filter
  400.         // For each element [i,j] of normalized K (Kn) the corresponding physical value is:
  401.         // K[i,j] = Kn[i,j] * scale[i] / ฯƒ[j]

  402.         // Normalized matrix
  403.         final RealMatrix normalizedK = correctedEstimate.getKalmanGain();

  404.         if (normalizedK == null) {
  405.             return null;
  406.         } else {
  407.             // Get current measurement sigmas
  408.             final double[] sigmas = correctedMeasurement.getObservedMeasurement().getTheoreticalStandardDeviation();

  409.             // Initialize physical matrix
  410.             final int nbLine = normalizedK.getRowDimension();
  411.             final int nbCol  = normalizedK.getColumnDimension();
  412.             final RealMatrix physicalK = MatrixUtils.createRealMatrix(nbLine, nbCol);

  413.             // Un-normalize the matrix
  414.             for (int i = 0; i < nbLine; ++i) {
  415.                 for (int j = 0; j < nbCol; ++j) {
  416.                     physicalK.setEntry(i, j, normalizedK.getEntry(i, j) * scale[i] / sigmas[j]);
  417.                 }
  418.             }
  419.             return physicalK;
  420.         }
  421.     }

  422.     /** {@inheritDoc} */
  423.     @Override
  424.     public SpacecraftState[] getPredictedSpacecraftStates() {
  425.         return predictedSpacecraftStates.clone();
  426.     }

  427.     /** {@inheritDoc} */
  428.     @Override
  429.     public SpacecraftState[] getCorrectedSpacecraftStates() {
  430.         return correctedSpacecraftStates.clone();
  431.     }

  432.     /** {@inheritDoc} */
  433.     @Override
  434.     public int getCurrentMeasurementNumber() {
  435.         return currentMeasurementNumber;
  436.     }

  437.     /** {@inheritDoc} */
  438.     @Override
  439.     public AbsoluteDate getCurrentDate() {
  440.         return currentDate;
  441.     }

  442.     /** {@inheritDoc} */
  443.     @Override
  444.     public EstimatedMeasurement<?> getPredictedMeasurement() {
  445.         return predictedMeasurement;
  446.     }

  447.     /** {@inheritDoc} */
  448.     @Override
  449.     public EstimatedMeasurement<?> getCorrectedMeasurement() {
  450.         return correctedMeasurement;
  451.     }

  452.     /** {@inheritDoc} */
  453.     @Override
  454.     public RealVector getPhysicalEstimatedState() {
  455.         // Method {@link ParameterDriver#getValue()} is used to get
  456.         // the physical values of the state.
  457.         // The scales'array is used to get the size of the state vector
  458.         final RealVector physicalEstimatedState = new ArrayRealVector(scale.length);
  459.         int i = 0;
  460.         for (final DelegatingDriver driver : getEstimatedOrbitalParameters().getDrivers()) {
  461.             physicalEstimatedState.setEntry(i++, driver.getValue());
  462.         }
  463.         for (final DelegatingDriver driver : getEstimatedPropagationParameters().getDrivers()) {
  464.             physicalEstimatedState.setEntry(i++, driver.getValue());
  465.         }
  466.         for (final DelegatingDriver driver : getEstimatedMeasurementsParameters().getDrivers()) {
  467.             physicalEstimatedState.setEntry(i++, driver.getValue());
  468.         }

  469.         return physicalEstimatedState;
  470.     }

  471.     /** {@inheritDoc} */
  472.     @Override
  473.     public RealMatrix getPhysicalEstimatedCovarianceMatrix() {
  474.         // Un-normalize the estimated covariance matrix (P) from Hipparchus and return it.
  475.         // The covariance P is an mxm matrix where m = nbOrb + nbPropag + nbMeas
  476.         // For each element [i,j] of P the corresponding normalized value is:
  477.         // Pn[i,j] = P[i,j] / (scale[i]*scale[j])
  478.         // Consequently: P[i,j] = Pn[i,j] * scale[i] * scale[j]

  479.         // Normalized covariance matrix
  480.         final RealMatrix normalizedP = correctedEstimate.getCovariance();

  481.         // Initialize physical covariance matrix
  482.         final int nbParams = normalizedP.getRowDimension();
  483.         final RealMatrix physicalP = MatrixUtils.createRealMatrix(nbParams, nbParams);

  484.         // Un-normalize the covairance matrix
  485.         for (int i = 0; i < nbParams; ++i) {
  486.             for (int j = 0; j < nbParams; ++j) {
  487.                 physicalP.setEntry(i, j, normalizedP.getEntry(i, j) * scale[i] * scale[j]);
  488.             }
  489.         }
  490.         return physicalP;
  491.     }

  492.     /** {@inheritDoc} */
  493.     @Override
  494.     public ParameterDriversList getEstimatedOrbitalParameters() {
  495.         return allEstimatedOrbitalParameters;
  496.     }

  497.     /** {@inheritDoc} */
  498.     @Override
  499.     public ParameterDriversList getEstimatedPropagationParameters() {
  500.         return allEstimatedPropagationParameters;
  501.     }

  502.     /** {@inheritDoc} */
  503.     @Override
  504.     public ParameterDriversList getEstimatedMeasurementsParameters() {
  505.         return estimatedMeasurementsParameters;
  506.     }

  507.     /** {@inheritDoc} */
  508.     public ProcessEstimate getEstimate() {
  509.         return correctedEstimate;
  510.     }

  511.     /** {@inheritDoc} */
  512.     public DSSTPropagator[] getEstimatedPropagators() {

  513.         // Return propagators built with current instantiation of the propagator builders
  514.         final DSSTPropagator[] propagators = new DSSTPropagator[builders.size()];
  515.         for (int k = 0; k < builders.size(); ++k) {
  516.             propagators[k] = (DSSTPropagator) builders.get(k).buildPropagator(builders.get(k).getSelectedNormalizedParameters());
  517.         }
  518.         return propagators;
  519.     }

  520.     /** Get the normalized error state transition matrix (STM) from previous point to current point.
  521.      * The STM contains the partial derivatives of current state with respect to previous state.
  522.      * The  STM is an mxm matrix where m is the size of the state vector.
  523.      * m = nbOrb + nbPropag + nbMeas
  524.      * @return the normalized error state transition matrix
  525.      */
  526.     private RealMatrix getErrorStateTransitionMatrix() {

  527.         /* The state transition matrix is obtained as follows, with:
  528.          *  - Y  : Current state vector
  529.          *  - Y0 : Initial state vector
  530.          *  - Pp : Current propagation parameter
  531.          *  - Pp0: Initial propagation parameter
  532.          *  - Mp : Current measurement parameter
  533.          *  - Mp0: Initial measurement parameter
  534.          *
  535.          *       |        |         |         |   |        |        |   .    |
  536.          *       | dY/dY0 | dY/dPp  | dY/dMp  |   | dY/dY0 | dY/dPp | ..0..  |
  537.          *       |        |         |         |   |        |        |   .    |
  538.          *       |--------|---------|---------|   |--------|--------|--------|
  539.          *       |        |         |         |   |   .    | 1 0 0..|   .    |
  540.          * STM = | dP/dY0 | dP/dPp0 | dP/dMp  | = | ..0..  | 0 1 0..| ..0..  |
  541.          *       |        |         |         |   |   .    | 0 0 1..|   .    |
  542.          *       |--------|---------|---------|   |--------|--------|--------|
  543.          *       |        |         |         |   |   .    |   .    | 1 0 0..|
  544.          *       | dM/dY0 | dM/dPp0 | dM/dMp0 |   | ..0..  | ..0..  | 0 1 0..|
  545.          *       |        |         |         |   |   .    |   .    | 0 0 1..|
  546.          */

  547.         // Initialize to the proper size identity matrix
  548.         final RealMatrix stm = MatrixUtils.createRealIdentityMatrix(correctedEstimate.getState().getDimension());

  549.         // loop over all orbits
  550.         for (int k = 0; k < predictedSpacecraftStates.length; ++k) {

  551.             // Short period derivatives
  552.             mappers[k].setShortPeriodJacobians(predictedSpacecraftStates[k]);

  553.             // Derivatives of the state vector with respect to initial state vector
  554.             final double[][] dYdY0 = new double[6][6];
  555.             mappers[k].getStateJacobian(predictedSpacecraftStates[k], dYdY0 );

  556.             // Fill upper left corner (dY/dY0)
  557.             final List<ParameterDriversList.DelegatingDriver> drivers =
  558.                             builders.get(k).getOrbitalParametersDrivers().getDrivers();
  559.             for (int i = 0; i < dYdY0.length; ++i) {
  560.                 if (drivers.get(i).isSelected()) {
  561.                     int jOrb = orbitsStartColumns[k];
  562.                     for (int j = 0; j < dYdY0[i].length; ++j) {
  563.                         if (drivers.get(j).isSelected()) {
  564.                             stm.setEntry(i, jOrb++, dYdY0[i][j]);
  565.                         }
  566.                     }
  567.                 }
  568.             }

  569.             // Derivatives of the state vector with respect to propagation parameters
  570.             final int nbParams = estimatedPropagationParameters[k].getNbParams();
  571.             if (nbParams > 0) {
  572.                 final double[][] dYdPp  = new double[6][nbParams];
  573.                 mappers[k].getParametersJacobian(predictedSpacecraftStates[k], dYdPp);

  574.                 // Fill 1st row, 2nd column (dY/dPp)
  575.                 for (int i = 0; i < dYdPp.length; ++i) {
  576.                     for (int j = 0; j < nbParams; ++j) {
  577.                         stm.setEntry(i, orbitsEndColumns[k] + j, dYdPp[i][j]);
  578.                     }
  579.                 }

  580.             }

  581.         }

  582.         // Normalization of the STM
  583.         // normalized(STM)ij = STMij*Sj/Si
  584.         for (int i = 0; i < scale.length; i++) {
  585.             for (int j = 0; j < scale.length; j++ ) {
  586.                 stm.setEntry(i, j, stm.getEntry(i, j) * scale[j] / scale[i]);
  587.             }
  588.         }

  589.         // Return the error state transition matrix
  590.         return stm;

  591.     }

  592.     /** Get the normalized measurement matrix H.
  593.      * H contains the partial derivatives of the measurement with respect to the state.
  594.      * H is an nxm matrix where n is the size of the measurement vector and m the size of the state vector.
  595.      * @return the normalized measurement matrix H
  596.      */
  597.     private RealMatrix getMeasurementMatrix() {

  598.         // Observed measurement characteristics
  599.         final SpacecraftState[]      evaluationStates    = predictedMeasurement.getStates();
  600.         final ObservedMeasurement<?> observedMeasurement = predictedMeasurement.getObservedMeasurement();
  601.         final double[] sigma  = observedMeasurement.getTheoreticalStandardDeviation();

  602.         // Initialize measurement matrix H: nxm
  603.         // n: Number of measurements in current measurement
  604.         // m: State vector size
  605.         final RealMatrix measurementMatrix = MatrixUtils.
  606.                         createRealMatrix(observedMeasurement.getDimension(),
  607.                                          correctedEstimate.getState().getDimension());

  608.         // loop over all orbits involved in the measurement
  609.         for (int k = 0; k < evaluationStates.length; ++k) {
  610.             final int p = observedMeasurement.getSatellites().get(k).getPropagatorIndex();

  611.             // Predicted orbit
  612.             final Orbit predictedOrbit = evaluationStates[k].getOrbit();

  613.             // Measurement matrix's columns related to orbital parameters
  614.             // ----------------------------------------------------------

  615.             // Partial derivatives of the current Cartesian coordinates with respect to current orbital state
  616.             final double[][] aCY = new double[6][6];
  617.             predictedOrbit.getJacobianWrtParameters(builders.get(p).getPositionAngle(), aCY);   //dC/dY
  618.             final RealMatrix dCdY = new Array2DRowRealMatrix(aCY, false);

  619.             // Jacobian of the measurement with respect to current Cartesian coordinates
  620.             final RealMatrix dMdC = new Array2DRowRealMatrix(predictedMeasurement.getStateDerivatives(k), false);

  621.             // Jacobian of the measurement with respect to current orbital state
  622.             final RealMatrix dMdY = dMdC.multiply(dCdY);

  623.             // Fill the normalized measurement matrix's columns related to estimated orbital parameters
  624.             for (int i = 0; i < dMdY.getRowDimension(); ++i) {
  625.                 int jOrb = orbitsStartColumns[p];
  626.                 for (int j = 0; j < dMdY.getColumnDimension(); ++j) {
  627.                     final ParameterDriver driver = builders.get(p).getOrbitalParametersDrivers().getDrivers().get(j);
  628.                     if (driver.isSelected()) {
  629.                         measurementMatrix.setEntry(i, jOrb++,
  630.                                                    dMdY.getEntry(i, j) / sigma[i] * driver.getScale());
  631.                     }
  632.                 }
  633.             }

  634.             // Normalized measurement matrix's columns related to propagation parameters
  635.             // --------------------------------------------------------------

  636.             // Jacobian of the measurement with respect to propagation parameters
  637.             final int nbParams = estimatedPropagationParameters[p].getNbParams();
  638.             if (nbParams > 0) {
  639.                 // Short period derivatives
  640.                 mappers[p].setShortPeriodJacobians(evaluationStates[k]);
  641.                 final double[][] aYPp  = new double[6][nbParams];
  642.                 mappers[p].getParametersJacobian(evaluationStates[k], aYPp);
  643.                 final RealMatrix dYdPp = new Array2DRowRealMatrix(aYPp, false);
  644.                 final RealMatrix dMdPp = dMdY.multiply(dYdPp);
  645.                 for (int i = 0; i < dMdPp.getRowDimension(); ++i) {
  646.                     for (int j = 0; j < nbParams; ++j) {
  647.                         final ParameterDriver delegating = allEstimatedPropagationParameters.getDrivers().get(j);
  648.                         measurementMatrix.setEntry(i, orbitsEndColumns[p] + j,
  649.                                                    dMdPp.getEntry(i, j) / sigma[i] * delegating.getScale());
  650.                     }
  651.                 }
  652.             }

  653.             // Normalized measurement matrix's columns related to measurement parameters
  654.             // --------------------------------------------------------------

  655.             // Jacobian of the measurement with respect to measurement parameters
  656.             // Gather the measurement parameters linked to current measurement
  657.             for (final ParameterDriver driver : observedMeasurement.getParametersDrivers()) {
  658.                 if (driver.isSelected()) {
  659.                     // Derivatives of current measurement w/r to selected measurement parameter
  660.                     final double[] aMPm = predictedMeasurement.getParameterDerivatives(driver);

  661.                     // Check that the measurement parameter is managed by the filter
  662.                     if (measurementParameterColumns.get(driver.getName()) != null) {
  663.                         // Column of the driver in the measurement matrix
  664.                         final int driverColumn = measurementParameterColumns.get(driver.getName());

  665.                         // Fill the corresponding indexes of the measurement matrix
  666.                         for (int i = 0; i < aMPm.length; ++i) {
  667.                             measurementMatrix.setEntry(i, driverColumn,
  668.                                                        aMPm[i] / sigma[i] * driver.getScale());
  669.                         }
  670.                     }
  671.                 }
  672.             }
  673.         }

  674.         // Return the normalized measurement matrix
  675.         return measurementMatrix;

  676.     }


  677.     /** Update the reference trajectories using the propagators as input.
  678.      * @param propagators The new propagators to use
  679.      */
  680.     private void updateReferenceTrajectories(final DSSTPropagator[] propagators) {

  681.         // Update the reference trajectory propagator
  682.         referenceTrajectories = propagators;

  683.         for (int k = 0; k < propagators.length; ++k) {
  684.             // Link the partial derivatives to this new propagator
  685.             final String equationName = KalmanEstimator.class.getName() + "-derivatives-" + k;
  686.             final DSSTPartialDerivativesEquations pde = new DSSTPartialDerivativesEquations(equationName, referenceTrajectories[k], propagationType);

  687.             // Reset the Jacobians
  688.             final SpacecraftState rawState = referenceTrajectories[k].getInitialState();
  689.             final SpacecraftState stateWithDerivatives = pde.setInitialJacobians(rawState);
  690.             referenceTrajectories[k].setInitialState(stateWithDerivatives, stateType);
  691.             mappers[k] = pde.getMapper();
  692.         }

  693.     }

  694.     /** Normalize a covariance matrix.
  695.      * The covariance P is an mxm matrix where m = nbOrb + nbPropag + nbMeas
  696.      * For each element [i,j] of P the corresponding normalized value is:
  697.      * Pn[i,j] = P[i,j] / (scale[i]*scale[j])
  698.      * @param physicalCovarianceMatrix The "physical" covariance matrix in input
  699.      * @return the normalized covariance matrix
  700.      */
  701.     private RealMatrix normalizeCovarianceMatrix(final RealMatrix physicalCovarianceMatrix) {

  702.         // Initialize output matrix
  703.         final int nbParams = physicalCovarianceMatrix.getRowDimension();
  704.         final RealMatrix normalizedCovarianceMatrix = MatrixUtils.createRealMatrix(nbParams, nbParams);

  705.         // Normalize the state matrix
  706.         for (int i = 0; i < nbParams; ++i) {
  707.             for (int j = 0; j < nbParams; ++j) {
  708.                 normalizedCovarianceMatrix.setEntry(i, j,
  709.                                                     physicalCovarianceMatrix.getEntry(i, j) /
  710.                                                     (scale[i] * scale[j]));
  711.             }
  712.         }
  713.         return normalizedCovarianceMatrix;
  714.     }

  715.     /** Set and apply a dynamic outlier filter on a measurement.<p>
  716.      * Loop on the modifiers to see if a dynamic outlier filter needs to be applied.<p>
  717.      * Compute the sigma array using the matrix in input and set the filter.<p>
  718.      * Apply the filter by calling the modify method on the estimated measurement.<p>
  719.      * Reset the filter.
  720.      * @param measurement measurement to filter
  721.      * @param innovationCovarianceMatrix So called innovation covariance matrix S, with:<p>
  722.      *        S = H.Ppred.Ht + R<p>
  723.      *        Where:<p>
  724.      *         - H is the normalized measurement matrix (Ht its transpose)<p>
  725.      *         - Ppred is the normalized predicted covariance matrix<p>
  726.      *         - R is the normalized measurement noise matrix
  727.      * @param <T> the type of measurement
  728.      */
  729.     private <T extends ObservedMeasurement<T>> void applyDynamicOutlierFilter(final EstimatedMeasurement<T> measurement,
  730.                                                                               final RealMatrix innovationCovarianceMatrix) {

  731.         // Observed measurement associated to the predicted measurement
  732.         final ObservedMeasurement<T> observedMeasurement = measurement.getObservedMeasurement();

  733.         // Check if a dynamic filter was added to the measurement
  734.         // If so, update its sigma value and apply it
  735.         for (EstimationModifier<T> modifier : observedMeasurement.getModifiers()) {
  736.             if (modifier instanceof DynamicOutlierFilter<?>) {
  737.                 final DynamicOutlierFilter<T> dynamicOutlierFilter = (DynamicOutlierFilter<T>) modifier;

  738.                 // Initialize the values of the sigma array used in the dynamic filter
  739.                 final double[] sigmaDynamic     = new double[innovationCovarianceMatrix.getColumnDimension()];
  740.                 final double[] sigmaMeasurement = observedMeasurement.getTheoreticalStandardDeviation();

  741.                 // Set the sigma value for each element of the measurement
  742.                 // Here we do use the value suggested by David A. Vallado (see [1]ยง10.6):
  743.                 // sigmaDynamic[i] = sqrt(diag(S))*sigma[i]
  744.                 // With S = H.Ppred.Ht + R
  745.                 // Where:
  746.                 //  - S is the measurement error matrix in input
  747.                 //  - H is the normalized measurement matrix (Ht its transpose)
  748.                 //  - Ppred is the normalized predicted covariance matrix
  749.                 //  - R is the normalized measurement noise matrix
  750.                 //  - sigma[i] is the theoretical standard deviation of the ith component of the measurement.
  751.                 //    It is used here to un-normalize the value before it is filtered
  752.                 for (int i = 0; i < sigmaDynamic.length; i++) {
  753.                     sigmaDynamic[i] = FastMath.sqrt(innovationCovarianceMatrix.getEntry(i, i)) * sigmaMeasurement[i];
  754.                 }
  755.                 dynamicOutlierFilter.setSigma(sigmaDynamic);

  756.                 // Apply the modifier on the estimated measurement
  757.                 modifier.modify(measurement);

  758.                 // Re-initialize the value of the filter for the next measurement of the same type
  759.                 dynamicOutlierFilter.setSigma(null);
  760.             }
  761.         }
  762.     }

  763.     /** {@inheritDoc} */
  764.     @Override
  765.     public NonLinearEvolution getEvolution(final double previousTime, final RealVector previousState,
  766.                                            final MeasurementDecorator measurement) {

  767.         // Set a reference date for all measurements parameters that lack one (including the not estimated ones)
  768.         final ObservedMeasurement<?> observedMeasurement = measurement.getObservedMeasurement();
  769.         for (final ParameterDriver driver : observedMeasurement.getParametersDrivers()) {
  770.             if (driver.getReferenceDate() == null) {
  771.                 driver.setReferenceDate(builders.get(0).getInitialOrbitDate());
  772.             }
  773.         }

  774.         ++currentMeasurementNumber;
  775.         currentDate = measurement.getObservedMeasurement().getDate();

  776.         // Note:
  777.         // - n = size of the current measurement
  778.         //  Example:
  779.         //   * 1 for Range, RangeRate and TurnAroundRange
  780.         //   * 2 for Angular (Azimuth/Elevation or Right-ascension/Declination)
  781.         //   * 6 for Position/Velocity
  782.         // - m = size of the state vector. n = nbOrb + nbPropag + nbMeas

  783.         // Predict the state vector (mx1)
  784.         final RealVector predictedState = predictState(observedMeasurement.getDate());

  785.         // Get the error state transition matrix (mxm)
  786.         final RealMatrix stateTransitionMatrix = getErrorStateTransitionMatrix();

  787.         // Predict the measurement based on predicted spacecraft state
  788.         // Compute the innovations (i.e. residuals of the predicted measurement)
  789.         // ------------------------------------------------------------

  790.         // Predicted measurement
  791.         // Note: here the "iteration/evaluation" formalism from the batch LS method
  792.         // is twisted to fit the need of the Kalman filter.
  793.         // The number of "iterations" is actually the number of measurements processed by the filter
  794.         // so far. We use this to be able to apply the OutlierFilter modifiers on the predicted measurement.
  795.         predictedMeasurement = observedMeasurement.estimate(currentMeasurementNumber,
  796.                                                             currentMeasurementNumber,
  797.                                                             filterRelevant(observedMeasurement, predictedSpacecraftStates));

  798.         // Normalized measurement matrix (nxm)
  799.         final RealMatrix measurementMatrix = getMeasurementMatrix();

  800.         // compute process noise matrix
  801.         final RealMatrix physicalProcessNoise = MatrixUtils.createRealMatrix(previousState.getDimension(),
  802.                                                                              previousState.getDimension());
  803.         for (int k = 0; k < covarianceMatricesProviders.size(); ++k) {
  804.             final RealMatrix noiseK = covarianceMatricesProviders.get(k).
  805.                                       getProcessNoiseMatrix(correctedSpacecraftStates[k],
  806.                                                             predictedSpacecraftStates[k]);
  807.             checkDimension(noiseK.getRowDimension(),
  808.                            builders.get(k).getOrbitalParametersDrivers(),
  809.                            builders.get(k).getPropagationParametersDrivers(),
  810.                            estimatedMeasurementsParameters);
  811.             final int[] indK = covarianceIndirection[k];
  812.             for (int i = 0; i < indK.length; ++i) {
  813.                 if (indK[i] >= 0) {
  814.                     for (int j = 0; j < indK.length; ++j) {
  815.                         if (indK[j] >= 0) {
  816.                             physicalProcessNoise.setEntry(indK[i], indK[j], noiseK.getEntry(i, j));
  817.                         }
  818.                     }
  819.                 }
  820.             }

  821.         }
  822.         final RealMatrix normalizedProcessNoise = normalizeCovarianceMatrix(physicalProcessNoise);

  823.         return new NonLinearEvolution(measurement.getTime(), predictedState,
  824.                                       stateTransitionMatrix, normalizedProcessNoise, measurementMatrix);

  825.     }

  826.     /** {@inheritDoc} */
  827.     @Override
  828.     public RealVector getInnovation(final MeasurementDecorator measurement, final NonLinearEvolution evolution,
  829.                                     final RealMatrix innovationCovarianceMatrix) {

  830.         // Apply the dynamic outlier filter, if it exists
  831.         applyDynamicOutlierFilter(predictedMeasurement, innovationCovarianceMatrix);
  832.         if (predictedMeasurement.getStatus() == EstimatedMeasurement.Status.REJECTED)  {
  833.             // set innovation to null to notify filter measurement is rejected
  834.             return null;
  835.         } else {
  836.             // Normalized innovation of the measurement (Nx1)
  837.             final double[] observed  = predictedMeasurement.getObservedMeasurement().getObservedValue();
  838.             final double[] estimated = predictedMeasurement.getEstimatedValue();
  839.             final double[] sigma     = predictedMeasurement.getObservedMeasurement().getTheoreticalStandardDeviation();
  840.             final double[] residuals = new double[observed.length];

  841.             for (int i = 0; i < observed.length; i++) {
  842.                 residuals[i] = (observed[i] - estimated[i]) / sigma[i];
  843.             }
  844.             return MatrixUtils.createRealVector(residuals);
  845.         }
  846.     }

  847.     /** {@inheritDoc} */
  848.     public void finalizeEstimation(final ObservedMeasurement<?> observedMeasurement,
  849.                                    final ProcessEstimate estimate) {
  850.         // Update the parameters with the estimated state
  851.         // The min/max values of the parameters are handled by the ParameterDriver implementation
  852.         correctedEstimate = estimate;
  853.         updateParameters();

  854.         // Get the estimated propagator (mirroring parameter update in the builder)
  855.         // and the estimated spacecraft state
  856.         final DSSTPropagator[] estimatedPropagators = getEstimatedPropagators();
  857.         for (int k = 0; k < estimatedPropagators.length; ++k) {
  858.             correctedSpacecraftStates[k] = estimatedPropagators[k].getInitialState();
  859.         }

  860.         // Compute the estimated measurement using estimated spacecraft state
  861.         correctedMeasurement = observedMeasurement.estimate(currentMeasurementNumber,
  862.                                                             currentMeasurementNumber,
  863.                                                             filterRelevant(observedMeasurement, correctedSpacecraftStates));
  864.         // Update the trajectory
  865.         // ---------------------
  866.         updateReferenceTrajectories(estimatedPropagators);

  867.     }

  868.     /** Filter relevant states for a measurement.
  869.      * @param observedMeasurement measurement to consider
  870.      * @param allStates all states
  871.      * @return array containing only the states relevant to the measurement
  872.      * @since 10.1
  873.      */
  874.     private SpacecraftState[] filterRelevant(final ObservedMeasurement<?> observedMeasurement, final SpacecraftState[] allStates) {
  875.         final List<ObservableSatellite> satellites = observedMeasurement.getSatellites();
  876.         final SpacecraftState[] relevantStates = new SpacecraftState[satellites.size()];
  877.         for (int i = 0; i < relevantStates.length; ++i) {
  878.             relevantStates[i] = allStates[satellites.get(i).getPropagatorIndex()];
  879.         }
  880.         return relevantStates;
  881.     }

  882.     /** Set the predicted normalized state vector.
  883.      * The predicted/propagated orbit is used to update the state vector
  884.      * @param date prediction date
  885.      * @return predicted state
  886.      */
  887.     private RealVector predictState(final AbsoluteDate date) {

  888.         // Predicted state is initialized to previous estimated state
  889.         final RealVector predictedState = correctedEstimate.getState().copy();

  890.         // Orbital parameters counter
  891.         int jOrb = 0;

  892.         for (int k = 0; k < predictedSpacecraftStates.length; ++k) {

  893.             // Propagate the reference trajectory to measurement date
  894.             predictedSpacecraftStates[k] = referenceTrajectories[k].propagate(date);

  895.             // Update the builder with the predicted orbit
  896.             // This updates the orbital drivers with the values of the predicted orbit
  897.             builders.get(k).resetOrbit(predictedSpacecraftStates[k].getOrbit());

  898.             // The orbital parameters in the state vector are replaced with their predicted values
  899.             // The propagation & measurement parameters are not changed by the prediction (i.e. the propagation)
  900.             // As the propagator builder was previously updated with the predicted orbit,
  901.             // the selected orbital drivers are already up to date with the prediction
  902.             for (DelegatingDriver orbitalDriver : builders.get(k).getOrbitalParametersDrivers().getDrivers()) {
  903.                 if (orbitalDriver.isSelected()) {
  904.                     predictedState.setEntry(jOrb++, orbitalDriver.getNormalizedValue());
  905.                 }
  906.             }

  907.         }

  908.         return predictedState;

  909.     }

  910.     /** Update the estimated parameters after the correction phase of the filter.
  911.      * The min/max allowed values are handled by the parameter themselves.
  912.      */
  913.     private void updateParameters() {
  914.         final RealVector correctedState = correctedEstimate.getState();
  915.         int i = 0;
  916.         for (final DelegatingDriver driver : getEstimatedOrbitalParameters().getDrivers()) {
  917.             // let the parameter handle min/max clipping
  918.             driver.setNormalizedValue(correctedState.getEntry(i));
  919.             correctedState.setEntry(i++, driver.getNormalizedValue());
  920.         }
  921.         for (final DelegatingDriver driver : getEstimatedPropagationParameters().getDrivers()) {
  922.             // let the parameter handle min/max clipping
  923.             driver.setNormalizedValue(correctedState.getEntry(i));
  924.             correctedState.setEntry(i++, driver.getNormalizedValue());
  925.         }
  926.         for (final DelegatingDriver driver : getEstimatedMeasurementsParameters().getDrivers()) {
  927.             // let the parameter handle min/max clipping
  928.             driver.setNormalizedValue(correctedState.getEntry(i));
  929.             correctedState.setEntry(i++, driver.getNormalizedValue());
  930.         }
  931.     }

  932. }