KalmanModel.java

  1. /* Copyright 2002-2020 CS Group
  2.  * Licensed to CS Group (CS) under one or more
  3.  * contributor license agreements.  See the NOTICE file distributed with
  4.  * this work for additional information regarding copyright ownership.
  5.  * CS licenses this file to You under the Apache License, Version 2.0
  6.  * (the "License"); you may not use this file except in compliance with
  7.  * the License.  You may obtain a copy of the License at
  8.  *
  9.  *   http://www.apache.org/licenses/LICENSE-2.0
  10.  *
  11.  * Unless required by applicable law or agreed to in writing, software
  12.  * distributed under the License is distributed on an "AS IS" BASIS,
  13.  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  14.  * See the License for the specific language governing permissions and
  15.  * limitations under the License.
  16.  */
  17. package org.orekit.estimation.sequential;

  18. import java.util.ArrayList;
  19. import java.util.Arrays;
  20. import java.util.Comparator;
  21. import java.util.HashMap;
  22. import java.util.List;
  23. import java.util.Map;

  24. import org.hipparchus.filtering.kalman.ProcessEstimate;
  25. import org.hipparchus.filtering.kalman.extended.NonLinearEvolution;
  26. import org.hipparchus.linear.Array2DRowRealMatrix;
  27. import org.hipparchus.linear.ArrayRealVector;
  28. import org.hipparchus.linear.MatrixUtils;
  29. import org.hipparchus.linear.RealMatrix;
  30. import org.hipparchus.linear.RealVector;
  31. import org.hipparchus.util.FastMath;
  32. import org.orekit.errors.OrekitException;
  33. import org.orekit.errors.OrekitMessages;
  34. import org.orekit.estimation.measurements.EstimatedMeasurement;
  35. import org.orekit.estimation.measurements.EstimationModifier;
  36. import org.orekit.estimation.measurements.ObservableSatellite;
  37. import org.orekit.estimation.measurements.ObservedMeasurement;
  38. import org.orekit.estimation.measurements.modifiers.DynamicOutlierFilter;
  39. import org.orekit.orbits.Orbit;
  40. import org.orekit.propagation.SpacecraftState;
  41. import org.orekit.propagation.conversion.IntegratedPropagatorBuilder;
  42. import org.orekit.propagation.numerical.JacobiansMapper;
  43. import org.orekit.propagation.numerical.NumericalPropagator;
  44. import org.orekit.propagation.numerical.PartialDerivativesEquations;
  45. import org.orekit.time.AbsoluteDate;
  46. import org.orekit.utils.ParameterDriver;
  47. import org.orekit.utils.ParameterDriversList;
  48. import org.orekit.utils.ParameterDriversList.DelegatingDriver;


  49. /** Class defining the process model dynamics to use with a {@link KalmanEstimator}.
  50.  * @author Romain Gerbaud
  51.  * @author Maxime Journot
  52.  * @since 9.2
  53.  */
  54. public class KalmanModel implements KalmanODModel {

  55.     /** Builders for propagators. */
  56.     private final List<IntegratedPropagatorBuilder> builders;

  57.     /** Estimated orbital parameters. */
  58.     private final ParameterDriversList allEstimatedOrbitalParameters;

  59.     /** Estimated propagation drivers. */
  60.     private final ParameterDriversList allEstimatedPropagationParameters;

  61.     /** Per-builder estimated propagation drivers. */
  62.     private final ParameterDriversList[] estimatedPropagationParameters;

  63.     /** Estimated measurements parameters. */
  64.     private final ParameterDriversList estimatedMeasurementsParameters;

  65.     /** Start columns for each estimated orbit. */
  66.     private final int[] orbitsStartColumns;

  67.     /** End columns for each estimated orbit. */
  68.     private final int[] orbitsEndColumns;

  69.     /** Map for measurements parameters columns. */
  70.     private final Map<String, Integer> measurementParameterColumns;

  71.     /** Providers for covariance matrices. */
  72.     private final List<CovarianceMatrixProvider> covarianceMatricesProviders;

  73.     /** Indirection arrays to extract the noise components for estimated parameters. */
  74.     private final int[][] covarianceIndirection;

  75.     /** Scaling factors. */
  76.     private final double[] scale;

  77.     /** Mappers for extracting Jacobians from integrated states. */
  78.     private final JacobiansMapper[] mappers;

  79.     /** Propagators for the reference trajectories, up to current date. */
  80.     private NumericalPropagator[] referenceTrajectories;

  81.     /** Current corrected estimate. */
  82.     private ProcessEstimate correctedEstimate;

  83.     /** Current number of measurement. */
  84.     private int currentMeasurementNumber;

  85.     /** Reference date. */
  86.     private AbsoluteDate referenceDate;

  87.     /** Current date. */
  88.     private AbsoluteDate currentDate;

  89.     /** Predicted spacecraft states. */
  90.     private SpacecraftState[] predictedSpacecraftStates;

  91.     /** Corrected spacecraft states. */
  92.     private SpacecraftState[] correctedSpacecraftStates;

  93.     /** Predicted measurement. */
  94.     private EstimatedMeasurement<?> predictedMeasurement;

  95.     /** Corrected measurement. */
  96.     private EstimatedMeasurement<?> correctedMeasurement;

  97.     /** Kalman process model constructor (package private).
  98.      * @param propagatorBuilders propagators builders used to evaluate the orbits.
  99.      * @param covarianceMatricesProviders providers for covariance matrices
  100.      * @param estimatedMeasurementParameters measurement parameters to estimate
  101.      */
  102.     public KalmanModel(final List<IntegratedPropagatorBuilder> propagatorBuilders,
  103.           final List<CovarianceMatrixProvider> covarianceMatricesProviders,
  104.           final ParameterDriversList estimatedMeasurementParameters) {

  105.         this.builders                        = propagatorBuilders;
  106.         this.estimatedMeasurementsParameters = estimatedMeasurementParameters;
  107.         this.measurementParameterColumns     = new HashMap<>(estimatedMeasurementsParameters.getDrivers().size());
  108.         this.currentMeasurementNumber        = 0;
  109.         this.referenceDate                   = propagatorBuilders.get(0).getInitialOrbitDate();
  110.         this.currentDate                     = referenceDate;

  111.         final Map<String, Integer> orbitalParameterColumns = new HashMap<>(6 * builders.size());
  112.         orbitsStartColumns      = new int[builders.size()];
  113.         orbitsEndColumns        = new int[builders.size()];
  114.         int columns = 0;
  115.         allEstimatedOrbitalParameters = new ParameterDriversList();
  116.         for (int k = 0; k < builders.size(); ++k) {
  117.             orbitsStartColumns[k] = columns;
  118.             final String suffix = propagatorBuilders.size() > 1 ? "[" + k + "]" : null;
  119.             for (final ParameterDriver driver : builders.get(k).getOrbitalParametersDrivers().getDrivers()) {
  120.                 if (driver.getReferenceDate() == null) {
  121.                     driver.setReferenceDate(currentDate);
  122.                 }
  123.                 if (suffix != null && !driver.getName().endsWith(suffix)) {
  124.                     // we add suffix only conditionally because the method may already have been called
  125.                     // and suffixes may have already been appended
  126.                     driver.setName(driver.getName() + suffix);
  127.                 }
  128.                 if (driver.isSelected()) {
  129.                     allEstimatedOrbitalParameters.add(driver);
  130.                     orbitalParameterColumns.put(driver.getName(), columns++);
  131.                 }
  132.             }
  133.             orbitsEndColumns[k] = columns;
  134.         }

  135.         // Gather all the propagation drivers names in a list
  136.         allEstimatedPropagationParameters = new ParameterDriversList();
  137.         estimatedPropagationParameters    = new ParameterDriversList[builders.size()];
  138.         final List<String> estimatedPropagationParametersNames = new ArrayList<>();
  139.         for (int k = 0; k < builders.size(); ++k) {
  140.             estimatedPropagationParameters[k] = new ParameterDriversList();
  141.             for (final ParameterDriver driver : builders.get(k).getPropagationParametersDrivers().getDrivers()) {
  142.                 if (driver.getReferenceDate() == null) {
  143.                     driver.setReferenceDate(currentDate);
  144.                 }
  145.                 if (driver.isSelected()) {
  146.                     allEstimatedPropagationParameters.add(driver);
  147.                     estimatedPropagationParameters[k].add(driver);
  148.                     final String driverName = driver.getName();
  149.                     // Add the driver name if it has not been added yet
  150.                     if (!estimatedPropagationParametersNames.contains(driverName)) {
  151.                         estimatedPropagationParametersNames.add(driverName);
  152.                     }
  153.                 }
  154.             }
  155.         }
  156.         estimatedPropagationParametersNames.sort(Comparator.naturalOrder());

  157.         // Populate the map of propagation drivers' columns and update the total number of columns
  158.         final Map<String, Integer> propagationParameterColumns = new HashMap<>(estimatedPropagationParametersNames.size());
  159.         for (final String driverName : estimatedPropagationParametersNames) {
  160.             propagationParameterColumns.put(driverName, columns);
  161.             ++columns;
  162.         }

  163.         // Populate the map of measurement drivers' columns and update the total number of columns
  164.         for (final ParameterDriver parameter : estimatedMeasurementsParameters.getDrivers()) {
  165.             if (parameter.getReferenceDate() == null) {
  166.                 parameter.setReferenceDate(currentDate);
  167.             }
  168.             measurementParameterColumns.put(parameter.getName(), columns);
  169.             ++columns;
  170.         }

  171.         // Store providers for process noise matrices
  172.         this.covarianceMatricesProviders = covarianceMatricesProviders;
  173.         this.covarianceIndirection       = new int[covarianceMatricesProviders.size()][columns];
  174.         for (int k = 0; k < covarianceIndirection.length; ++k) {
  175.             final ParameterDriversList orbitDrivers      = builders.get(k).getOrbitalParametersDrivers();
  176.             final ParameterDriversList parametersDrivers = builders.get(k).getPropagationParametersDrivers();
  177.             Arrays.fill(covarianceIndirection[k], -1);
  178.             int i = 0;
  179.             for (final ParameterDriver driver : orbitDrivers.getDrivers()) {
  180.                 final Integer c = orbitalParameterColumns.get(driver.getName());
  181.                 covarianceIndirection[k][i++] = (c == null) ? -1 : c.intValue();
  182.             }
  183.             for (final ParameterDriver driver : parametersDrivers.getDrivers()) {
  184.                 final Integer c = propagationParameterColumns.get(driver.getName());
  185.                 if (c != null) {
  186.                     covarianceIndirection[k][i++] = c.intValue();
  187.                 }
  188.             }
  189.             for (final ParameterDriver driver : estimatedMeasurementParameters.getDrivers()) {
  190.                 final Integer c = measurementParameterColumns.get(driver.getName());
  191.                 if (c != null) {
  192.                     covarianceIndirection[k][i++] = c.intValue();
  193.                 }
  194.             }
  195.         }

  196.         // Compute the scale factors
  197.         this.scale = new double[columns];
  198.         int index = 0;
  199.         for (final ParameterDriver driver : allEstimatedOrbitalParameters.getDrivers()) {
  200.             scale[index++] = driver.getScale();
  201.         }
  202.         for (final ParameterDriver driver : allEstimatedPropagationParameters.getDrivers()) {
  203.             scale[index++] = driver.getScale();
  204.         }
  205.         for (final ParameterDriver driver : estimatedMeasurementsParameters.getDrivers()) {
  206.             scale[index++] = driver.getScale();
  207.         }

  208.         // Build the reference propagators and add their partial derivatives equations implementation
  209.         mappers = new JacobiansMapper[builders.size()];
  210.         updateReferenceTrajectories(getEstimatedPropagators());
  211.         this.predictedSpacecraftStates = new SpacecraftState[referenceTrajectories.length];
  212.         for (int i = 0; i < predictedSpacecraftStates.length; ++i) {
  213.             predictedSpacecraftStates[i] = referenceTrajectories[i].getInitialState();
  214.         };
  215.         this.correctedSpacecraftStates = predictedSpacecraftStates.clone();

  216.         // Initialize the estimated normalized state and fill its values
  217.         final RealVector correctedState      = MatrixUtils.createRealVector(columns);

  218.         int p = 0;
  219.         for (final ParameterDriver driver : allEstimatedOrbitalParameters.getDrivers()) {
  220.             correctedState.setEntry(p++, driver.getNormalizedValue());
  221.         }
  222.         for (final ParameterDriver driver : allEstimatedPropagationParameters.getDrivers()) {
  223.             correctedState.setEntry(p++, driver.getNormalizedValue());
  224.         }
  225.         for (final ParameterDriver driver : estimatedMeasurementsParameters.getDrivers()) {
  226.             correctedState.setEntry(p++, driver.getNormalizedValue());
  227.         }

  228.         // Set up initial covariance
  229.         final RealMatrix physicalProcessNoise = MatrixUtils.createRealMatrix(columns, columns);
  230.         for (int k = 0; k < covarianceMatricesProviders.size(); ++k) {
  231.             final RealMatrix noiseK = covarianceMatricesProviders.get(k).
  232.                                       getInitialCovarianceMatrix(correctedSpacecraftStates[k]);
  233.             checkDimension(noiseK.getRowDimension(),
  234.                            builders.get(k).getOrbitalParametersDrivers(),
  235.                            builders.get(k).getPropagationParametersDrivers(),
  236.                            estimatedMeasurementsParameters);
  237.             final int[] indK = covarianceIndirection[k];
  238.             for (int i = 0; i < indK.length; ++i) {
  239.                 if (indK[i] >= 0) {
  240.                     for (int j = 0; j < indK.length; ++j) {
  241.                         if (indK[j] >= 0) {
  242.                             physicalProcessNoise.setEntry(indK[i], indK[j], noiseK.getEntry(i, j));
  243.                         }
  244.                     }
  245.                 }
  246.             }

  247.         }
  248.         final RealMatrix correctedCovariance = normalizeCovarianceMatrix(physicalProcessNoise);

  249.         correctedEstimate = new ProcessEstimate(0.0, correctedState, correctedCovariance);

  250.     }

  251.     /** Check dimension.
  252.      * @param dimension dimension to check
  253.      * @param orbitalParameters orbital parameters
  254.      * @param propagationParameters propagation parameters
  255.      * @param measurementParameters measurements parameters
  256.      */
  257.     private void checkDimension(final int dimension,
  258.                                 final ParameterDriversList orbitalParameters,
  259.                                 final ParameterDriversList propagationParameters,
  260.                                 final ParameterDriversList measurementParameters) {

  261.         // count parameters, taking care of counting all orbital parameters
  262.         // regardless of them being estimated or not
  263.         int requiredDimension = orbitalParameters.getNbParams();
  264.         for (final ParameterDriver driver : propagationParameters.getDrivers()) {
  265.             if (driver.isSelected()) {
  266.                 ++requiredDimension;
  267.             }
  268.         }
  269.         for (final ParameterDriver driver : measurementParameters.getDrivers()) {
  270.             if (driver.isSelected()) {
  271.                 ++requiredDimension;
  272.             }
  273.         }

  274.         if (dimension != requiredDimension) {
  275.             // there is a problem, set up an explicit error message
  276.             final StringBuilder builder = new StringBuilder();
  277.             for (final ParameterDriver driver : orbitalParameters.getDrivers()) {
  278.                 if (builder.length() > 0) {
  279.                     builder.append(", ");
  280.                 }
  281.                 builder.append(driver.getName());
  282.             }
  283.             for (final ParameterDriver driver : propagationParameters.getDrivers()) {
  284.                 if (driver.isSelected()) {
  285.                     builder.append(driver.getName());
  286.                 }
  287.             }
  288.             for (final ParameterDriver driver : measurementParameters.getDrivers()) {
  289.                 if (driver.isSelected()) {
  290.                     builder.append(driver.getName());
  291.                 }
  292.             }
  293.             throw new OrekitException(OrekitMessages.DIMENSION_INCONSISTENT_WITH_PARAMETERS,
  294.                                       dimension, builder.toString());
  295.         }

  296.     }

  297.     /** {@inheritDoc} */
  298.     @Override
  299.     public SpacecraftState[] getPredictedSpacecraftStates() {
  300.         return predictedSpacecraftStates.clone();
  301.     }

  302.     /** {@inheritDoc} */
  303.     @Override
  304.     public SpacecraftState[] getCorrectedSpacecraftStates() {
  305.         return correctedSpacecraftStates.clone();
  306.     }

  307.     /** {@inheritDoc} */
  308.     @Override
  309.     public RealMatrix getPhysicalStateTransitionMatrix() {
  310.         //  Un-normalize the state transition matrix (ฯ†) from Hipparchus and return it.
  311.         // ฯ† is an mxm matrix where m = nbOrb + nbPropag + nbMeas
  312.         // For each element [i,j] of normalized ฯ† (ฯ†n), the corresponding physical value is:
  313.         // ฯ†[i,j] = ฯ†n[i,j] * scale[i] / scale[j]

  314.         // Normalized matrix
  315.         final RealMatrix normalizedSTM = correctedEstimate.getStateTransitionMatrix();

  316.         if (normalizedSTM == null) {
  317.             return null;
  318.         } else {
  319.             // Initialize physical matrix
  320.             final int nbParams = normalizedSTM.getRowDimension();
  321.             final RealMatrix physicalSTM = MatrixUtils.createRealMatrix(nbParams, nbParams);

  322.             // Un-normalize the matrix
  323.             for (int i = 0; i < nbParams; ++i) {
  324.                 for (int j = 0; j < nbParams; ++j) {
  325.                     physicalSTM.setEntry(i, j,
  326.                                          normalizedSTM.getEntry(i, j) * scale[i] / scale[j]);
  327.                 }
  328.             }
  329.             return physicalSTM;
  330.         }
  331.     }

  332.     /** {@inheritDoc} */
  333.     @Override
  334.     public RealMatrix getPhysicalMeasurementJacobian() {
  335.         // Un-normalize the measurement matrix (H) from Hipparchus and return it.
  336.         // H is an nxm matrix where:
  337.         //  - m = nbOrb + nbPropag + nbMeas is the number of estimated parameters
  338.         //  - n is the size of the measurement being processed by the filter
  339.         // For each element [i,j] of normalized H (Hn) the corresponding physical value is:
  340.         // H[i,j] = Hn[i,j] * ฯƒ[i] / scale[j]

  341.         // Normalized matrix
  342.         final RealMatrix normalizedH = correctedEstimate.getMeasurementJacobian();

  343.         if (normalizedH == null) {
  344.             return null;
  345.         } else {
  346.             // Get current measurement sigmas
  347.             final double[] sigmas = correctedMeasurement.getObservedMeasurement().getTheoreticalStandardDeviation();

  348.             // Initialize physical matrix
  349.             final int nbLine = normalizedH.getRowDimension();
  350.             final int nbCol  = normalizedH.getColumnDimension();
  351.             final RealMatrix physicalH = MatrixUtils.createRealMatrix(nbLine, nbCol);

  352.             // Un-normalize the matrix
  353.             for (int i = 0; i < nbLine; ++i) {
  354.                 for (int j = 0; j < nbCol; ++j) {
  355.                     physicalH.setEntry(i, j, normalizedH.getEntry(i, j) * sigmas[i] / scale[j]);
  356.                 }
  357.             }
  358.             return physicalH;
  359.         }
  360.     }

  361.     /** {@inheritDoc} */
  362.     @Override
  363.     public RealMatrix getPhysicalInnovationCovarianceMatrix() {
  364.         // Un-normalize the innovation covariance matrix (S) from Hipparchus and return it.
  365.         // S is an nxn matrix where n is the size of the measurement being processed by the filter
  366.         // For each element [i,j] of normalized S (Sn) the corresponding physical value is:
  367.         // S[i,j] = Sn[i,j] * ฯƒ[i] * ฯƒ[j]

  368.         // Normalized matrix
  369.         final RealMatrix normalizedS = correctedEstimate.getInnovationCovariance();

  370.         if (normalizedS == null) {
  371.             return null;
  372.         } else {
  373.             // Get current measurement sigmas
  374.             final double[] sigmas = correctedMeasurement.getObservedMeasurement().getTheoreticalStandardDeviation();

  375.             // Initialize physical matrix
  376.             final int nbMeas = sigmas.length;
  377.             final RealMatrix physicalS = MatrixUtils.createRealMatrix(nbMeas, nbMeas);

  378.             // Un-normalize the matrix
  379.             for (int i = 0; i < nbMeas; ++i) {
  380.                 for (int j = 0; j < nbMeas; ++j) {
  381.                     physicalS.setEntry(i, j, normalizedS.getEntry(i, j) * sigmas[i] *   sigmas[j]);
  382.                 }
  383.             }
  384.             return physicalS;
  385.         }
  386.     }

  387.     /** {@inheritDoc} */
  388.     @Override
  389.     public RealMatrix getPhysicalKalmanGain() {
  390.         // Un-normalize the Kalman gain (K) from Hipparchus and return it.
  391.         // K is an mxn matrix where:
  392.         //  - m = nbOrb + nbPropag + nbMeas is the number of estimated parameters
  393.         //  - n is the size of the measurement being processed by the filter
  394.         // For each element [i,j] of normalized K (Kn) the corresponding physical value is:
  395.         // K[i,j] = Kn[i,j] * scale[i] / ฯƒ[j]

  396.         // Normalized matrix
  397.         final RealMatrix normalizedK = correctedEstimate.getKalmanGain();

  398.         if (normalizedK == null) {
  399.             return null;
  400.         } else {
  401.             // Get current measurement sigmas
  402.             final double[] sigmas = correctedMeasurement.getObservedMeasurement().getTheoreticalStandardDeviation();

  403.             // Initialize physical matrix
  404.             final int nbLine = normalizedK.getRowDimension();
  405.             final int nbCol  = normalizedK.getColumnDimension();
  406.             final RealMatrix physicalK = MatrixUtils.createRealMatrix(nbLine, nbCol);

  407.             // Un-normalize the matrix
  408.             for (int i = 0; i < nbLine; ++i) {
  409.                 for (int j = 0; j < nbCol; ++j) {
  410.                     physicalK.setEntry(i, j, normalizedK.getEntry(i, j) * scale[i] / sigmas[j]);
  411.                 }
  412.             }
  413.             return physicalK;
  414.         }
  415.     }

  416.     /** {@inheritDoc} */
  417.     @Override
  418.     public int getCurrentMeasurementNumber() {
  419.         return currentMeasurementNumber;
  420.     }

  421.     /** {@inheritDoc} */
  422.     @Override
  423.     public AbsoluteDate getCurrentDate() {
  424.         return currentDate;
  425.     }

  426.     /** {@inheritDoc} */
  427.     @Override
  428.     public EstimatedMeasurement<?> getPredictedMeasurement() {
  429.         return predictedMeasurement;
  430.     }

  431.     /** {@inheritDoc} */
  432.     @Override
  433.     public EstimatedMeasurement<?> getCorrectedMeasurement() {
  434.         return correctedMeasurement;
  435.     }

  436.     /** {@inheritDoc} */
  437.     @Override
  438.     public RealVector getPhysicalEstimatedState() {
  439.         // Method {@link ParameterDriver#getValue()} is used to get
  440.         // the physical values of the state.
  441.         // The scales'array is used to get the size of the state vector
  442.         final RealVector physicalEstimatedState = new ArrayRealVector(scale.length);
  443.         int i = 0;
  444.         for (final DelegatingDriver driver : getEstimatedOrbitalParameters().getDrivers()) {
  445.             physicalEstimatedState.setEntry(i++, driver.getValue());
  446.         }
  447.         for (final DelegatingDriver driver : getEstimatedPropagationParameters().getDrivers()) {
  448.             physicalEstimatedState.setEntry(i++, driver.getValue());
  449.         }
  450.         for (final DelegatingDriver driver : getEstimatedMeasurementsParameters().getDrivers()) {
  451.             physicalEstimatedState.setEntry(i++, driver.getValue());
  452.         }

  453.         return physicalEstimatedState;
  454.     }

  455.     /** {@inheritDoc} */
  456.     @Override
  457.     public RealMatrix getPhysicalEstimatedCovarianceMatrix() {
  458.         // Un-normalize the estimated covariance matrix (P) from Hipparchus and return it.
  459.         // The covariance P is an mxm matrix where m = nbOrb + nbPropag + nbMeas
  460.         // For each element [i,j] of P the corresponding normalized value is:
  461.         // Pn[i,j] = P[i,j] / (scale[i]*scale[j])
  462.         // Consequently: P[i,j] = Pn[i,j] * scale[i] * scale[j]

  463.         // Normalized covariance matrix
  464.         final RealMatrix normalizedP = correctedEstimate.getCovariance();

  465.         // Initialize physical covariance matrix
  466.         final int nbParams = normalizedP.getRowDimension();
  467.         final RealMatrix physicalP = MatrixUtils.createRealMatrix(nbParams, nbParams);

  468.         // Un-normalize the covairance matrix
  469.         for (int i = 0; i < nbParams; ++i) {
  470.             for (int j = 0; j < nbParams; ++j) {
  471.                 physicalP.setEntry(i, j, normalizedP.getEntry(i, j) * scale[i] * scale[j]);
  472.             }
  473.         }
  474.         return physicalP;
  475.     }

  476.     /** {@inheritDoc} */
  477.     @Override
  478.     public ParameterDriversList getEstimatedOrbitalParameters() {
  479.         return allEstimatedOrbitalParameters;
  480.     }

  481.     /** {@inheritDoc} */
  482.     @Override
  483.     public ParameterDriversList getEstimatedPropagationParameters() {
  484.         return allEstimatedPropagationParameters;
  485.     }

  486.     /** {@inheritDoc} */
  487.     @Override
  488.     public ParameterDriversList getEstimatedMeasurementsParameters() {
  489.         return estimatedMeasurementsParameters;
  490.     }

  491.     /** {@inheritDoc} */
  492.     public ProcessEstimate getEstimate() {
  493.         return correctedEstimate;
  494.     }

  495.     /** {@inheritDoc} */
  496.     public NumericalPropagator[] getEstimatedPropagators() {

  497.         // Return propagators built with current instantiation of the propagator builders
  498.         final NumericalPropagator[] propagators = new NumericalPropagator[builders.size()];
  499.         for (int k = 0; k < builders.size(); ++k) {
  500.             propagators[k] = (NumericalPropagator) builders.get(k).buildPropagator(builders.get(k).getSelectedNormalizedParameters());
  501.         }
  502.         return propagators;
  503.     }

  504.     /** Get the normalized error state transition matrix (STM) from previous point to current point.
  505.      * The STM contains the partial derivatives of current state with respect to previous state.
  506.      * The  STM is an mxm matrix where m is the size of the state vector.
  507.      * m = nbOrb + nbPropag + nbMeas
  508.      * @return the normalized error state transition matrix
  509.      */
  510.     private RealMatrix getErrorStateTransitionMatrix() {

  511.         /* The state transition matrix is obtained as follows, with:
  512.          *  - Y  : Current state vector
  513.          *  - Y0 : Initial state vector
  514.          *  - Pp : Current propagation parameter
  515.          *  - Pp0: Initial propagation parameter
  516.          *  - Mp : Current measurement parameter
  517.          *  - Mp0: Initial measurement parameter
  518.          *
  519.          *       |        |         |         |   |        |        |   .    |
  520.          *       | dY/dY0 | dY/dPp  | dY/dMp  |   | dY/dY0 | dY/dPp | ..0..  |
  521.          *       |        |         |         |   |        |        |   .    |
  522.          *       |--------|---------|---------|   |--------|--------|--------|
  523.          *       |        |         |         |   |   .    | 1 0 0..|   .    |
  524.          * STM = | dP/dY0 | dP/dPp0 | dP/dMp  | = | ..0..  | 0 1 0..| ..0..  |
  525.          *       |        |         |         |   |   .    | 0 0 1..|   .    |
  526.          *       |--------|---------|---------|   |--------|--------|--------|
  527.          *       |        |         |         |   |   .    |   .    | 1 0 0..|
  528.          *       | dM/dY0 | dM/dPp0 | dM/dMp0 |   | ..0..  | ..0..  | 0 1 0..|
  529.          *       |        |         |         |   |   .    |   .    | 0 0 1..|
  530.          */

  531.         // Initialize to the proper size identity matrix
  532.         final RealMatrix stm = MatrixUtils.createRealIdentityMatrix(correctedEstimate.getState().getDimension());

  533.         // loop over all orbits
  534.         for (int k = 0; k < predictedSpacecraftStates.length; ++k) {

  535.             // Derivatives of the state vector with respect to initial state vector
  536.             final double[][] dYdY0 = new double[6][6];
  537.             mappers[k].getStateJacobian(predictedSpacecraftStates[k], dYdY0 );

  538.             // Fill upper left corner (dY/dY0)
  539.             final List<ParameterDriversList.DelegatingDriver> drivers =
  540.                             builders.get(k).getOrbitalParametersDrivers().getDrivers();
  541.             for (int i = 0; i < dYdY0.length; ++i) {
  542.                 if (drivers.get(i).isSelected()) {
  543.                     int jOrb = orbitsStartColumns[k];
  544.                     for (int j = 0; j < dYdY0[i].length; ++j) {
  545.                         if (drivers.get(j).isSelected()) {
  546.                             stm.setEntry(i, jOrb++, dYdY0[i][j]);
  547.                         }
  548.                     }
  549.                 }
  550.             }

  551.             // Derivatives of the state vector with respect to propagation parameters
  552.             final int nbParams = estimatedPropagationParameters[k].getNbParams();
  553.             if (nbParams > 0) {
  554.                 final double[][] dYdPp  = new double[6][nbParams];
  555.                 mappers[k].getParametersJacobian(predictedSpacecraftStates[k], dYdPp);

  556.                 // Fill 1st row, 2nd column (dY/dPp)
  557.                 for (int i = 0; i < dYdPp.length; ++i) {
  558.                     for (int j = 0; j < nbParams; ++j) {
  559.                         stm.setEntry(i, orbitsEndColumns[k] + j, dYdPp[i][j]);
  560.                     }
  561.                 }

  562.             }

  563.         }

  564.         // Normalization of the STM
  565.         // normalized(STM)ij = STMij*Sj/Si
  566.         for (int i = 0; i < scale.length; i++) {
  567.             for (int j = 0; j < scale.length; j++ ) {
  568.                 stm.setEntry(i, j, stm.getEntry(i, j) * scale[j] / scale[i]);
  569.             }
  570.         }

  571.         // Return the error state transition matrix
  572.         return stm;

  573.     }

  574.     /** Get the normalized measurement matrix H.
  575.      * H contains the partial derivatives of the measurement with respect to the state.
  576.      * H is an nxm matrix where n is the size of the measurement vector and m the size of the state vector.
  577.      * @return the normalized measurement matrix H
  578.      */
  579.     private RealMatrix getMeasurementMatrix() {

  580.         // Observed measurement characteristics
  581.         final SpacecraftState[]      evaluationStates    = predictedMeasurement.getStates();
  582.         final ObservedMeasurement<?> observedMeasurement = predictedMeasurement.getObservedMeasurement();
  583.         final double[] sigma  = observedMeasurement.getTheoreticalStandardDeviation();

  584.         // Initialize measurement matrix H: nxm
  585.         // n: Number of measurements in current measurement
  586.         // m: State vector size
  587.         final RealMatrix measurementMatrix = MatrixUtils.
  588.                         createRealMatrix(observedMeasurement.getDimension(),
  589.                                          correctedEstimate.getState().getDimension());

  590.         // loop over all orbits involved in the measurement
  591.         for (int k = 0; k < evaluationStates.length; ++k) {
  592.             final int p = observedMeasurement.getSatellites().get(k).getPropagatorIndex();

  593.             // Predicted orbit
  594.             final Orbit predictedOrbit = evaluationStates[k].getOrbit();

  595.             // Measurement matrix's columns related to orbital parameters
  596.             // ----------------------------------------------------------

  597.             // Partial derivatives of the current Cartesian coordinates with respect to current orbital state
  598.             final double[][] aCY = new double[6][6];
  599.             predictedOrbit.getJacobianWrtParameters(builders.get(p).getPositionAngle(), aCY);   //dC/dY
  600.             final RealMatrix dCdY = new Array2DRowRealMatrix(aCY, false);

  601.             // Jacobian of the measurement with respect to current Cartesian coordinates
  602.             final RealMatrix dMdC = new Array2DRowRealMatrix(predictedMeasurement.getStateDerivatives(k), false);

  603.             // Jacobian of the measurement with respect to current orbital state
  604.             final RealMatrix dMdY = dMdC.multiply(dCdY);

  605.             // Fill the normalized measurement matrix's columns related to estimated orbital parameters
  606.             for (int i = 0; i < dMdY.getRowDimension(); ++i) {
  607.                 int jOrb = orbitsStartColumns[p];
  608.                 for (int j = 0; j < dMdY.getColumnDimension(); ++j) {
  609.                     final ParameterDriver driver = builders.get(p).getOrbitalParametersDrivers().getDrivers().get(j);
  610.                     if (driver.isSelected()) {
  611.                         measurementMatrix.setEntry(i, jOrb++,
  612.                                                    dMdY.getEntry(i, j) / sigma[i] * driver.getScale());
  613.                     }
  614.                 }
  615.             }

  616.             // Normalized measurement matrix's columns related to propagation parameters
  617.             // --------------------------------------------------------------

  618.             // Jacobian of the measurement with respect to propagation parameters
  619.             final int nbParams = estimatedPropagationParameters[p].getNbParams();
  620.             if (nbParams > 0) {
  621.                 final double[][] aYPp  = new double[6][nbParams];
  622.                 mappers[p].getParametersJacobian(evaluationStates[k], aYPp);
  623.                 final RealMatrix dYdPp = new Array2DRowRealMatrix(aYPp, false);
  624.                 final RealMatrix dMdPp = dMdY.multiply(dYdPp);
  625.                 for (int i = 0; i < dMdPp.getRowDimension(); ++i) {
  626.                     for (int j = 0; j < nbParams; ++j) {
  627.                         final ParameterDriver delegating = allEstimatedPropagationParameters.getDrivers().get(j);
  628.                         measurementMatrix.setEntry(i, orbitsEndColumns[p] + j,
  629.                                                    dMdPp.getEntry(i, j) / sigma[i] * delegating.getScale());
  630.                     }
  631.                 }
  632.             }

  633.             // Normalized measurement matrix's columns related to measurement parameters
  634.             // --------------------------------------------------------------

  635.             // Jacobian of the measurement with respect to measurement parameters
  636.             // Gather the measurement parameters linked to current measurement
  637.             for (final ParameterDriver driver : observedMeasurement.getParametersDrivers()) {
  638.                 if (driver.isSelected()) {
  639.                     // Derivatives of current measurement w/r to selected measurement parameter
  640.                     final double[] aMPm = predictedMeasurement.getParameterDerivatives(driver);

  641.                     // Check that the measurement parameter is managed by the filter
  642.                     if (measurementParameterColumns.get(driver.getName()) != null) {
  643.                         // Column of the driver in the measurement matrix
  644.                         final int driverColumn = measurementParameterColumns.get(driver.getName());

  645.                         // Fill the corresponding indexes of the measurement matrix
  646.                         for (int i = 0; i < aMPm.length; ++i) {
  647.                             measurementMatrix.setEntry(i, driverColumn,
  648.                                                        aMPm[i] / sigma[i] * driver.getScale());
  649.                         }
  650.                     }
  651.                 }
  652.             }
  653.         }

  654.         // Return the normalized measurement matrix
  655.         return measurementMatrix;

  656.     }


  657.     /** Update the reference trajectories using the propagators as input.
  658.      * @param propagators The new propagators to use
  659.     */
  660.     private void updateReferenceTrajectories(final NumericalPropagator[] propagators) {

  661.         // Update the reference trajectory propagator
  662.         referenceTrajectories = propagators;

  663.         for (int k = 0; k < propagators.length; ++k) {
  664.             // Link the partial derivatives to this new propagator
  665.             final String equationName = KalmanEstimator.class.getName() + "-derivatives-" + k;
  666.             final PartialDerivativesEquations pde = new PartialDerivativesEquations(equationName, referenceTrajectories[k]);

  667.             // Reset the Jacobians
  668.             final SpacecraftState rawState = referenceTrajectories[k].getInitialState();
  669.             final SpacecraftState stateWithDerivatives = pde.setInitialJacobians(rawState);
  670.             referenceTrajectories[k].resetInitialState(stateWithDerivatives);
  671.             mappers[k] = pde.getMapper();
  672.         }

  673.     }

  674.     /** Normalize a covariance matrix.
  675.      * The covariance P is an mxm matrix where m = nbOrb + nbPropag + nbMeas
  676.      * For each element [i,j] of P the corresponding normalized value is:
  677.      * Pn[i,j] = P[i,j] / (scale[i]*scale[j])
  678.      * @param physicalCovarianceMatrix The "physical" covariance matrix in input
  679.      * @return the normalized covariance matrix
  680.      */
  681.     private RealMatrix normalizeCovarianceMatrix(final RealMatrix physicalCovarianceMatrix) {

  682.         // Initialize output matrix
  683.         final int nbParams = physicalCovarianceMatrix.getRowDimension();
  684.         final RealMatrix normalizedCovarianceMatrix = MatrixUtils.createRealMatrix(nbParams, nbParams);

  685.         // Normalize the state matrix
  686.         for (int i = 0; i < nbParams; ++i) {
  687.             for (int j = 0; j < nbParams; ++j) {
  688.                 normalizedCovarianceMatrix.setEntry(i, j,
  689.                                                     physicalCovarianceMatrix.getEntry(i, j) /
  690.                                                     (scale[i] * scale[j]));
  691.             }
  692.         }
  693.         return normalizedCovarianceMatrix;
  694.     }

  695.     /** Set and apply a dynamic outlier filter on a measurement.<p>
  696.      * Loop on the modifiers to see if a dynamic outlier filter needs to be applied.<p>
  697.      * Compute the sigma array using the matrix in input and set the filter.<p>
  698.      * Apply the filter by calling the modify method on the estimated measurement.<p>
  699.      * Reset the filter.
  700.      * @param measurement measurement to filter
  701.      * @param innovationCovarianceMatrix So called innovation covariance matrix S, with:<p>
  702.      *        S = H.Ppred.Ht + R<p>
  703.      *        Where:<p>
  704.      *         - H is the normalized measurement matrix (Ht its transpose)<p>
  705.      *         - Ppred is the normalized predicted covariance matrix<p>
  706.      *         - R is the normalized measurement noise matrix
  707.      * @param <T> the type of measurement
  708.      */
  709.     private <T extends ObservedMeasurement<T>> void applyDynamicOutlierFilter(final EstimatedMeasurement<T> measurement,
  710.                                                                               final RealMatrix innovationCovarianceMatrix) {

  711.         // Observed measurement associated to the predicted measurement
  712.         final ObservedMeasurement<T> observedMeasurement = measurement.getObservedMeasurement();

  713.         // Check if a dynamic filter was added to the measurement
  714.         // If so, update its sigma value and apply it
  715.         for (EstimationModifier<T> modifier : observedMeasurement.getModifiers()) {
  716.             if (modifier instanceof DynamicOutlierFilter<?>) {
  717.                 final DynamicOutlierFilter<T> dynamicOutlierFilter = (DynamicOutlierFilter<T>) modifier;

  718.                 // Initialize the values of the sigma array used in the dynamic filter
  719.                 final double[] sigmaDynamic     = new double[innovationCovarianceMatrix.getColumnDimension()];
  720.                 final double[] sigmaMeasurement = observedMeasurement.getTheoreticalStandardDeviation();

  721.                 // Set the sigma value for each element of the measurement
  722.                 // Here we do use the value suggested by David A. Vallado (see [1]ยง10.6):
  723.                 // sigmaDynamic[i] = sqrt(diag(S))*sigma[i]
  724.                 // With S = H.Ppred.Ht + R
  725.                 // Where:
  726.                 //  - S is the measurement error matrix in input
  727.                 //  - H is the normalized measurement matrix (Ht its transpose)
  728.                 //  - Ppred is the normalized predicted covariance matrix
  729.                 //  - R is the normalized measurement noise matrix
  730.                 //  - sigma[i] is the theoretical standard deviation of the ith component of the measurement.
  731.                 //    It is used here to un-normalize the value before it is filtered
  732.                 for (int i = 0; i < sigmaDynamic.length; i++) {
  733.                     sigmaDynamic[i] = FastMath.sqrt(innovationCovarianceMatrix.getEntry(i, i)) * sigmaMeasurement[i];
  734.                 }
  735.                 dynamicOutlierFilter.setSigma(sigmaDynamic);

  736.                 // Apply the modifier on the estimated measurement
  737.                 modifier.modify(measurement);

  738.                 // Re-initialize the value of the filter for the next measurement of the same type
  739.                 dynamicOutlierFilter.setSigma(null);
  740.             }
  741.         }
  742.     }

  743.     /** {@inheritDoc} */
  744.     @Override
  745.     public NonLinearEvolution getEvolution(final double previousTime, final RealVector previousState,
  746.                                            final MeasurementDecorator measurement) {

  747.         // Set a reference date for all measurements parameters that lack one (including the not estimated ones)
  748.         final ObservedMeasurement<?> observedMeasurement = measurement.getObservedMeasurement();
  749.         for (final ParameterDriver driver : observedMeasurement.getParametersDrivers()) {
  750.             if (driver.getReferenceDate() == null) {
  751.                 driver.setReferenceDate(builders.get(0).getInitialOrbitDate());
  752.             }
  753.         }

  754.         ++currentMeasurementNumber;
  755.         currentDate = measurement.getObservedMeasurement().getDate();

  756.         // Note:
  757.         // - n = size of the current measurement
  758.         //  Example:
  759.         //   * 1 for Range, RangeRate and TurnAroundRange
  760.         //   * 2 for Angular (Azimuth/Elevation or Right-ascension/Declination)
  761.         //   * 6 for Position/Velocity
  762.         // - m = size of the state vector. n = nbOrb + nbPropag + nbMeas

  763.         // Predict the state vector (mx1)
  764.         final RealVector predictedState = predictState(observedMeasurement.getDate());

  765.         // Get the error state transition matrix (mxm)
  766.         final RealMatrix stateTransitionMatrix = getErrorStateTransitionMatrix();

  767.         // Predict the measurement based on predicted spacecraft state
  768.         // Compute the innovations (i.e. residuals of the predicted measurement)
  769.         // ------------------------------------------------------------

  770.         // Predicted measurement
  771.         // Note: here the "iteration/evaluation" formalism from the batch LS method
  772.         // is twisted to fit the need of the Kalman filter.
  773.         // The number of "iterations" is actually the number of measurements processed by the filter
  774.         // so far. We use this to be able to apply the OutlierFilter modifiers on the predicted measurement.
  775.         predictedMeasurement = observedMeasurement.estimate(currentMeasurementNumber,
  776.                                                             currentMeasurementNumber,
  777.                                                             filterRelevant(observedMeasurement, predictedSpacecraftStates));

  778.         // Normalized measurement matrix (nxm)
  779.         final RealMatrix measurementMatrix = getMeasurementMatrix();

  780.         // compute process noise matrix
  781.         final RealMatrix physicalProcessNoise = MatrixUtils.createRealMatrix(previousState.getDimension(),
  782.                                                                              previousState.getDimension());
  783.         for (int k = 0; k < covarianceMatricesProviders.size(); ++k) {
  784.             final RealMatrix noiseK = covarianceMatricesProviders.get(k).
  785.                                       getProcessNoiseMatrix(correctedSpacecraftStates[k],
  786.                                                             predictedSpacecraftStates[k]);
  787.             checkDimension(noiseK.getRowDimension(),
  788.                            builders.get(k).getOrbitalParametersDrivers(),
  789.                            builders.get(k).getPropagationParametersDrivers(),
  790.                            estimatedMeasurementsParameters);
  791.             final int[] indK = covarianceIndirection[k];
  792.             for (int i = 0; i < indK.length; ++i) {
  793.                 if (indK[i] >= 0) {
  794.                     for (int j = 0; j < indK.length; ++j) {
  795.                         if (indK[j] >= 0) {
  796.                             physicalProcessNoise.setEntry(indK[i], indK[j], noiseK.getEntry(i, j));
  797.                         }
  798.                     }
  799.                 }
  800.             }

  801.         }
  802.         final RealMatrix normalizedProcessNoise = normalizeCovarianceMatrix(physicalProcessNoise);

  803.         return new NonLinearEvolution(measurement.getTime(), predictedState,
  804.                                       stateTransitionMatrix, normalizedProcessNoise, measurementMatrix);

  805.     }

  806.     /** {@inheritDoc} */
  807.     @Override
  808.     public RealVector getInnovation(final MeasurementDecorator measurement, final NonLinearEvolution evolution,
  809.                                     final RealMatrix innovationCovarianceMatrix) {

  810.         // Apply the dynamic outlier filter, if it exists
  811.         applyDynamicOutlierFilter(predictedMeasurement, innovationCovarianceMatrix);
  812.         if (predictedMeasurement.getStatus() == EstimatedMeasurement.Status.REJECTED)  {
  813.             // set innovation to null to notify filter measurement is rejected
  814.             return null;
  815.         } else {
  816.             // Normalized innovation of the measurement (Nx1)
  817.             final double[] observed  = predictedMeasurement.getObservedMeasurement().getObservedValue();
  818.             final double[] estimated = predictedMeasurement.getEstimatedValue();
  819.             final double[] sigma     = predictedMeasurement.getObservedMeasurement().getTheoreticalStandardDeviation();
  820.             final double[] residuals = new double[observed.length];

  821.             for (int i = 0; i < observed.length; i++) {
  822.                 residuals[i] = (observed[i] - estimated[i]) / sigma[i];
  823.             }
  824.             return MatrixUtils.createRealVector(residuals);
  825.         }
  826.     }

  827.     /** {@inheritDoc} */
  828.     public void finalizeEstimation(final ObservedMeasurement<?> observedMeasurement,
  829.                                    final ProcessEstimate estimate) {
  830.         // Update the parameters with the estimated state
  831.         // The min/max values of the parameters are handled by the ParameterDriver implementation
  832.         correctedEstimate = estimate;
  833.         updateParameters();

  834.         // Get the estimated propagator (mirroring parameter update in the builder)
  835.         // and the estimated spacecraft state
  836.         final NumericalPropagator[] estimatedPropagators = getEstimatedPropagators();
  837.         for (int k = 0; k < estimatedPropagators.length; ++k) {
  838.             correctedSpacecraftStates[k] = estimatedPropagators[k].getInitialState();
  839.         }

  840.         // Compute the estimated measurement using estimated spacecraft state
  841.         correctedMeasurement = observedMeasurement.estimate(currentMeasurementNumber,
  842.                                                             currentMeasurementNumber,
  843.                                                             filterRelevant(observedMeasurement, correctedSpacecraftStates));
  844.         // Update the trajectory
  845.         // ---------------------
  846.         updateReferenceTrajectories(estimatedPropagators);

  847.     }

  848.     /** Filter relevant states for a measurement.
  849.      * @param observedMeasurement measurement to consider
  850.      * @param allStates all states
  851.      * @return array containing only the states relevant to the measurement
  852.      * @since 10.1
  853.      */
  854.     private SpacecraftState[] filterRelevant(final ObservedMeasurement<?> observedMeasurement, final SpacecraftState[] allStates) {
  855.         final List<ObservableSatellite> satellites = observedMeasurement.getSatellites();
  856.         final SpacecraftState[] relevantStates = new SpacecraftState[satellites.size()];
  857.         for (int i = 0; i < relevantStates.length; ++i) {
  858.             relevantStates[i] = allStates[satellites.get(i).getPropagatorIndex()];
  859.         }
  860.         return relevantStates;
  861.     }

  862.     /** Set the predicted normalized state vector.
  863.      * The predicted/propagated orbit is used to update the state vector
  864.      * @param date prediction date
  865.      * @return predicted state
  866.      */
  867.     private RealVector predictState(final AbsoluteDate date) {

  868.         // Predicted state is initialized to previous estimated state
  869.         final RealVector predictedState = correctedEstimate.getState().copy();

  870.         // Orbital parameters counter
  871.         int jOrb = 0;

  872.         for (int k = 0; k < predictedSpacecraftStates.length; ++k) {

  873.             // Propagate the reference trajectory to measurement date
  874.             predictedSpacecraftStates[k] = referenceTrajectories[k].propagate(date);

  875.             // Update the builder with the predicted orbit
  876.             // This updates the orbital drivers with the values of the predicted orbit
  877.             builders.get(k).resetOrbit(predictedSpacecraftStates[k].getOrbit());

  878.             // The orbital parameters in the state vector are replaced with their predicted values
  879.             // The propagation & measurement parameters are not changed by the prediction (i.e. the propagation)
  880.             // As the propagator builder was previously updated with the predicted orbit,
  881.             // the selected orbital drivers are already up to date with the prediction
  882.             for (DelegatingDriver orbitalDriver : builders.get(k).getOrbitalParametersDrivers().getDrivers()) {
  883.                 if (orbitalDriver.isSelected()) {
  884.                     predictedState.setEntry(jOrb++, orbitalDriver.getNormalizedValue());
  885.                 }
  886.             }

  887.         }

  888.         return predictedState;

  889.     }

  890.     /** Update the estimated parameters after the correction phase of the filter.
  891.      * The min/max allowed values are handled by the parameter themselves.
  892.      */
  893.     private void updateParameters() {
  894.         final RealVector correctedState = correctedEstimate.getState();
  895.         int i = 0;
  896.         for (final DelegatingDriver driver : getEstimatedOrbitalParameters().getDrivers()) {
  897.             // let the parameter handle min/max clipping
  898.             driver.setNormalizedValue(correctedState.getEntry(i));
  899.             correctedState.setEntry(i++, driver.getNormalizedValue());
  900.         }
  901.         for (final DelegatingDriver driver : getEstimatedPropagationParameters().getDrivers()) {
  902.             // let the parameter handle min/max clipping
  903.             driver.setNormalizedValue(correctedState.getEntry(i));
  904.             correctedState.setEntry(i++, driver.getNormalizedValue());
  905.         }
  906.         for (final DelegatingDriver driver : getEstimatedMeasurementsParameters().getDrivers()) {
  907.             // let the parameter handle min/max clipping
  908.             driver.setNormalizedValue(correctedState.getEntry(i));
  909.             correctedState.setEntry(i++, driver.getNormalizedValue());
  910.         }
  911.     }

  912. }