AngularRaDec.java
- /* Copyright 2002-2020 CS GROUP
- * Licensed to CS GROUP (CS) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * CS licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.orekit.estimation.measurements;
- import java.util.Arrays;
- import java.util.HashMap;
- import java.util.Map;
- import org.hipparchus.analysis.differentiation.Gradient;
- import org.hipparchus.analysis.differentiation.GradientField;
- import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
- import org.hipparchus.util.MathUtils;
- import org.orekit.frames.FieldTransform;
- import org.orekit.frames.Frame;
- import org.orekit.propagation.SpacecraftState;
- import org.orekit.time.AbsoluteDate;
- import org.orekit.time.FieldAbsoluteDate;
- import org.orekit.utils.ParameterDriver;
- import org.orekit.utils.TimeStampedFieldPVCoordinates;
- import org.orekit.utils.TimeStampedPVCoordinates;
- /** Class modeling an Right Ascension - Declination measurement from a ground point (station, telescope).
- * The angles are given in an inertial reference frame.
- * The motion of the spacecraft during the signal flight time is taken into
- * account. The date of the measurement corresponds to the reception on
- * ground of the reflected signal.
- *
- * @author Thierry Ceolin
- * @author Maxime Journot
- * @since 9.0
- */
- public class AngularRaDec extends AbstractMeasurement<AngularRaDec> {
- /** Ground station from which measurement is performed. */
- private final GroundStation station;
- /** Reference frame in which the right ascension - declination angles are given. */
- private final Frame referenceFrame;
- /** Simple constructor.
- * @param station ground station from which measurement is performed
- * @param referenceFrame Reference frame in which the right ascension - declination angles are given
- * @param date date of the measurement
- * @param angular observed value
- * @param sigma theoretical standard deviation
- * @param baseWeight base weight
- * @param satellite satellite related to this measurement
- * @since 9.3
- */
- public AngularRaDec(final GroundStation station, final Frame referenceFrame, final AbsoluteDate date,
- final double[] angular, final double[] sigma, final double[] baseWeight,
- final ObservableSatellite satellite) {
- super(date, angular, sigma, baseWeight, Arrays.asList(satellite));
- addParameterDriver(station.getClockOffsetDriver());
- addParameterDriver(station.getEastOffsetDriver());
- addParameterDriver(station.getNorthOffsetDriver());
- addParameterDriver(station.getZenithOffsetDriver());
- addParameterDriver(station.getPrimeMeridianOffsetDriver());
- addParameterDriver(station.getPrimeMeridianDriftDriver());
- addParameterDriver(station.getPolarOffsetXDriver());
- addParameterDriver(station.getPolarDriftXDriver());
- addParameterDriver(station.getPolarOffsetYDriver());
- addParameterDriver(station.getPolarDriftYDriver());
- this.station = station;
- this.referenceFrame = referenceFrame;
- }
- /** Get the ground station from which measurement is performed.
- * @return ground station from which measurement is performed
- */
- public GroundStation getStation() {
- return station;
- }
- /** Get the reference frame in which the right ascension - declination angles are given.
- * @return reference frame in which the right ascension - declination angles are given
- */
- public Frame getReferenceFrame() {
- return referenceFrame;
- }
- /** {@inheritDoc} */
- @Override
- protected EstimatedMeasurement<AngularRaDec> theoreticalEvaluation(final int iteration, final int evaluation,
- final SpacecraftState[] states) {
- final SpacecraftState state = states[0];
- // Right Ascension/elevation (in reference frame )derivatives are computed with respect to spacecraft state in inertial frame
- // and station parameters
- // ----------------------
- //
- // Parameters:
- // - 0..2 - Position of the spacecraft in inertial frame
- // - 3..5 - Velocity of the spacecraft in inertial frame
- // - 6..n - station parameters (clock offset, station offsets, pole, prime meridian...)
- // Get the number of parameters used for derivation
- // Place the selected drivers into a map
- int nbParams = 6;
- final Map<String, Integer> indices = new HashMap<>();
- for (ParameterDriver driver : getParametersDrivers()) {
- if (driver.isSelected()) {
- indices.put(driver.getName(), nbParams++);
- }
- }
- final FieldVector3D<Gradient> zero = FieldVector3D.getZero(GradientField.getField(nbParams));
- // Coordinates of the spacecraft expressed as a gradient
- final TimeStampedFieldPVCoordinates<Gradient> pvaDS = getCoordinates(state, 0, nbParams);
- // Transform between station and inertial frame, expressed as a gradient
- // The components of station's position in offset frame are the 3 last derivative parameters
- final FieldTransform<Gradient> offsetToInertialDownlink =
- station.getOffsetToInertial(state.getFrame(), getDate(), nbParams, indices);
- final FieldAbsoluteDate<Gradient> downlinkDateDS =
- offsetToInertialDownlink.getFieldDate();
- // Station position/velocity in inertial frame at end of the downlink leg
- final TimeStampedFieldPVCoordinates<Gradient> stationDownlink =
- offsetToInertialDownlink.transformPVCoordinates(new TimeStampedFieldPVCoordinates<>(downlinkDateDS,
- zero, zero, zero));
- // Compute propagation times
- // (if state has already been set up to pre-compensate propagation delay,
- // we will have delta == tauD and transitState will be the same as state)
- // Downlink delay
- final Gradient tauD = signalTimeOfFlight(pvaDS, stationDownlink.getPosition(), downlinkDateDS);
- // Transit state
- final Gradient delta = downlinkDateDS.durationFrom(state.getDate());
- final Gradient deltaMTauD = tauD.negate().add(delta);
- final SpacecraftState transitState = state.shiftedBy(deltaMTauD.getValue());
- // Transit state (re)computed with gradients
- final TimeStampedFieldPVCoordinates<Gradient> transitStateDS = pvaDS.shiftedBy(deltaMTauD);
- // Station-satellite vector expressed in inertial frame
- final FieldVector3D<Gradient> staSatInertial = transitStateDS.getPosition().subtract(stationDownlink.getPosition());
- // Field transform from inertial to reference frame at station's reception date
- final FieldTransform<Gradient> inertialToReferenceDownlink =
- state.getFrame().getTransformTo(referenceFrame, downlinkDateDS);
- // Station-satellite vector in reference frame
- final FieldVector3D<Gradient> staSatReference = inertialToReferenceDownlink.transformPosition(staSatInertial);
- // Compute right ascension and declination
- final Gradient baseRightAscension = staSatReference.getAlpha();
- final double twoPiWrap = MathUtils.normalizeAngle(baseRightAscension.getReal(),
- getObservedValue()[0]) - baseRightAscension.getReal();
- final Gradient rightAscension = baseRightAscension.add(twoPiWrap);
- final Gradient declination = staSatReference.getDelta();
- // Prepare the estimation
- final EstimatedMeasurement<AngularRaDec> estimated =
- new EstimatedMeasurement<>(this, iteration, evaluation,
- new SpacecraftState[] {
- transitState
- }, new TimeStampedPVCoordinates[] {
- transitStateDS.toTimeStampedPVCoordinates(),
- stationDownlink.toTimeStampedPVCoordinates()
- });
- // azimuth - elevation values
- estimated.setEstimatedValue(rightAscension.getValue(), declination.getValue());
- // Partial derivatives of right ascension/declination in reference frame with respect to state
- // (beware element at index 0 is the value, not a derivative)
- final double[] raDerivatives = rightAscension.getGradient();
- final double[] decDerivatives = declination.getGradient();
- estimated.setStateDerivatives(0,
- Arrays.copyOfRange(raDerivatives, 0, 6), Arrays.copyOfRange(decDerivatives, 0, 6));
- // Partial derivatives with respect to parameters
- // (beware element at index 0 is the value, not a derivative)
- for (final ParameterDriver driver : getParametersDrivers()) {
- final Integer index = indices.get(driver.getName());
- if (index != null) {
- estimated.setParameterDerivatives(driver, raDerivatives[index], decDerivatives[index]);
- }
- }
- return estimated;
- }
- }