KalmanModel.java

  1. /* Copyright 2002-2020 CS GROUP
  2.  * Licensed to CS GROUP (CS) under one or more
  3.  * contributor license agreements.  See the NOTICE file distributed with
  4.  * this work for additional information regarding copyright ownership.
  5.  * CS licenses this file to You under the Apache License, Version 2.0
  6.  * (the "License"); you may not use this file except in compliance with
  7.  * the License.  You may obtain a copy of the License at
  8.  *
  9.  *   http://www.apache.org/licenses/LICENSE-2.0
  10.  *
  11.  * Unless required by applicable law or agreed to in writing, software
  12.  * distributed under the License is distributed on an "AS IS" BASIS,
  13.  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  14.  * See the License for the specific language governing permissions and
  15.  * limitations under the License.
  16.  */
  17. package org.orekit.estimation.sequential;

  18. import java.util.ArrayList;
  19. import java.util.Arrays;
  20. import java.util.Comparator;
  21. import java.util.HashMap;
  22. import java.util.List;
  23. import java.util.Map;

  24. import org.hipparchus.filtering.kalman.ProcessEstimate;
  25. import org.hipparchus.filtering.kalman.extended.NonLinearEvolution;
  26. import org.hipparchus.linear.Array2DRowRealMatrix;
  27. import org.hipparchus.linear.ArrayRealVector;
  28. import org.hipparchus.linear.MatrixUtils;
  29. import org.hipparchus.linear.RealMatrix;
  30. import org.hipparchus.linear.RealVector;
  31. import org.hipparchus.util.FastMath;
  32. import org.orekit.errors.OrekitException;
  33. import org.orekit.errors.OrekitMessages;
  34. import org.orekit.estimation.measurements.EstimatedMeasurement;
  35. import org.orekit.estimation.measurements.EstimationModifier;
  36. import org.orekit.estimation.measurements.ObservableSatellite;
  37. import org.orekit.estimation.measurements.ObservedMeasurement;
  38. import org.orekit.estimation.measurements.modifiers.DynamicOutlierFilter;
  39. import org.orekit.orbits.Orbit;
  40. import org.orekit.propagation.SpacecraftState;
  41. import org.orekit.propagation.conversion.IntegratedPropagatorBuilder;
  42. import org.orekit.propagation.numerical.JacobiansMapper;
  43. import org.orekit.propagation.numerical.NumericalPropagator;
  44. import org.orekit.propagation.numerical.PartialDerivativesEquations;
  45. import org.orekit.time.AbsoluteDate;
  46. import org.orekit.utils.ParameterDriver;
  47. import org.orekit.utils.ParameterDriversList;
  48. import org.orekit.utils.ParameterDriversList.DelegatingDriver;


  49. /** Class defining the process model dynamics to use with a {@link KalmanEstimator}.
  50.  * @author Romain Gerbaud
  51.  * @author Maxime Journot
  52.  * @since 9.2
  53.  */
  54. public class KalmanModel implements KalmanODModel {

  55.     /** Builders for propagators. */
  56.     private final List<IntegratedPropagatorBuilder> builders;

  57.     /** Estimated orbital parameters. */
  58.     private final ParameterDriversList allEstimatedOrbitalParameters;

  59.     /** Estimated propagation drivers. */
  60.     private final ParameterDriversList allEstimatedPropagationParameters;

  61.     /** Per-builder estimated propagation drivers. */
  62.     private final ParameterDriversList[] estimatedPropagationParameters;

  63.     /** Estimated measurements parameters. */
  64.     private final ParameterDriversList estimatedMeasurementsParameters;

  65.     /** Start columns for each estimated orbit. */
  66.     private final int[] orbitsStartColumns;

  67.     /** End columns for each estimated orbit. */
  68.     private final int[] orbitsEndColumns;

  69.     /** Map for propagation parameters columns. */
  70.     private final Map<String, Integer> propagationParameterColumns;

  71.     /** Map for measurements parameters columns. */
  72.     private final Map<String, Integer> measurementParameterColumns;

  73.     /** Providers for covariance matrices. */
  74.     private final List<CovarianceMatrixProvider> covarianceMatricesProviders;

  75.     /** Process noise matrix provider for measurement parameters. */
  76.     private final CovarianceMatrixProvider measurementProcessNoiseMatrix;

  77.     /** Indirection arrays to extract the noise components for estimated parameters. */
  78.     private final int[][] covarianceIndirection;

  79.     /** Scaling factors. */
  80.     private final double[] scale;

  81.     /** Mappers for extracting Jacobians from integrated states. */
  82.     private final JacobiansMapper[] mappers;

  83.     /** Propagators for the reference trajectories, up to current date. */
  84.     private NumericalPropagator[] referenceTrajectories;

  85.     /** Current corrected estimate. */
  86.     private ProcessEstimate correctedEstimate;

  87.     /** Current number of measurement. */
  88.     private int currentMeasurementNumber;

  89.     /** Reference date. */
  90.     private AbsoluteDate referenceDate;

  91.     /** Current date. */
  92.     private AbsoluteDate currentDate;

  93.     /** Predicted spacecraft states. */
  94.     private SpacecraftState[] predictedSpacecraftStates;

  95.     /** Corrected spacecraft states. */
  96.     private SpacecraftState[] correctedSpacecraftStates;

  97.     /** Predicted measurement. */
  98.     private EstimatedMeasurement<?> predictedMeasurement;

  99.     /** Corrected measurement. */
  100.     private EstimatedMeasurement<?> correctedMeasurement;

  101.     /** Kalman process model constructor.
  102.      * @param propagatorBuilders propagators builders used to evaluate the orbits.
  103.      * @param covarianceMatricesProviders providers for covariance matrices (orbital and propagation parameters)
  104.      * @param estimatedMeasurementParameters measurement parameters to estimate
  105.      * @deprecated since 10.3, replaced by {@link #KalmanModel(List, List, ParameterDriversList, CovarianceMatrixProvider)}
  106.      */
  107.     @Deprecated
  108.     public KalmanModel(final List<IntegratedPropagatorBuilder> propagatorBuilders,
  109.                        final List<CovarianceMatrixProvider> covarianceMatricesProviders,
  110.                        final ParameterDriversList estimatedMeasurementParameters) {
  111.         this(propagatorBuilders, covarianceMatricesProviders, estimatedMeasurementParameters, null);
  112.     }

  113.     /** Kalman process model constructor.
  114.      * @param propagatorBuilders propagators builders used to evaluate the orbits.
  115.      * @param covarianceMatricesProviders providers for covariance matrices
  116.      * @param estimatedMeasurementParameters measurement parameters to estimate
  117.      * @param measurementProcessNoiseMatrix provider for measurement process noise matrix
  118.      */
  119.     public KalmanModel(final List<IntegratedPropagatorBuilder> propagatorBuilders,
  120.                        final List<CovarianceMatrixProvider> covarianceMatricesProviders,
  121.                        final ParameterDriversList estimatedMeasurementParameters,
  122.                        final CovarianceMatrixProvider measurementProcessNoiseMatrix) {

  123.         this.builders                        = propagatorBuilders;
  124.         this.estimatedMeasurementsParameters = estimatedMeasurementParameters;
  125.         this.measurementParameterColumns     = new HashMap<>(estimatedMeasurementsParameters.getDrivers().size());
  126.         this.currentMeasurementNumber        = 0;
  127.         this.referenceDate                   = propagatorBuilders.get(0).getInitialOrbitDate();
  128.         this.currentDate                     = referenceDate;

  129.         final Map<String, Integer> orbitalParameterColumns = new HashMap<>(6 * builders.size());
  130.         orbitsStartColumns      = new int[builders.size()];
  131.         orbitsEndColumns        = new int[builders.size()];
  132.         int columns = 0;
  133.         allEstimatedOrbitalParameters = new ParameterDriversList();
  134.         for (int k = 0; k < builders.size(); ++k) {
  135.             orbitsStartColumns[k] = columns;
  136.             final String suffix = propagatorBuilders.size() > 1 ? "[" + k + "]" : null;
  137.             for (final ParameterDriver driver : builders.get(k).getOrbitalParametersDrivers().getDrivers()) {
  138.                 if (driver.getReferenceDate() == null) {
  139.                     driver.setReferenceDate(currentDate);
  140.                 }
  141.                 if (suffix != null && !driver.getName().endsWith(suffix)) {
  142.                     // we add suffix only conditionally because the method may already have been called
  143.                     // and suffixes may have already been appended
  144.                     driver.setName(driver.getName() + suffix);
  145.                 }
  146.                 if (driver.isSelected()) {
  147.                     allEstimatedOrbitalParameters.add(driver);
  148.                     orbitalParameterColumns.put(driver.getName(), columns++);
  149.                 }
  150.             }
  151.             orbitsEndColumns[k] = columns;
  152.         }

  153.         // Gather all the propagation drivers names in a list
  154.         allEstimatedPropagationParameters = new ParameterDriversList();
  155.         estimatedPropagationParameters    = new ParameterDriversList[builders.size()];
  156.         final List<String> estimatedPropagationParametersNames = new ArrayList<>();
  157.         for (int k = 0; k < builders.size(); ++k) {
  158.             estimatedPropagationParameters[k] = new ParameterDriversList();
  159.             for (final ParameterDriver driver : builders.get(k).getPropagationParametersDrivers().getDrivers()) {
  160.                 if (driver.getReferenceDate() == null) {
  161.                     driver.setReferenceDate(currentDate);
  162.                 }
  163.                 if (driver.isSelected()) {
  164.                     allEstimatedPropagationParameters.add(driver);
  165.                     estimatedPropagationParameters[k].add(driver);
  166.                     final String driverName = driver.getName();
  167.                     // Add the driver name if it has not been added yet
  168.                     if (!estimatedPropagationParametersNames.contains(driverName)) {
  169.                         estimatedPropagationParametersNames.add(driverName);
  170.                     }
  171.                 }
  172.             }
  173.         }
  174.         estimatedPropagationParametersNames.sort(Comparator.naturalOrder());

  175.         // Populate the map of propagation drivers' columns and update the total number of columns
  176.         propagationParameterColumns = new HashMap<>(estimatedPropagationParametersNames.size());
  177.         for (final String driverName : estimatedPropagationParametersNames) {
  178.             propagationParameterColumns.put(driverName, columns);
  179.             ++columns;
  180.         }

  181.         // Populate the map of measurement drivers' columns and update the total number of columns
  182.         for (final ParameterDriver parameter : estimatedMeasurementsParameters.getDrivers()) {
  183.             if (parameter.getReferenceDate() == null) {
  184.                 parameter.setReferenceDate(currentDate);
  185.             }
  186.             measurementParameterColumns.put(parameter.getName(), columns);
  187.             ++columns;
  188.         }

  189.         // Store providers for process noise matrices
  190.         this.covarianceMatricesProviders   = covarianceMatricesProviders;
  191.         this.measurementProcessNoiseMatrix = measurementProcessNoiseMatrix;
  192.         this.covarianceIndirection         = new int[covarianceMatricesProviders.size()][columns];
  193.         for (int k = 0; k < covarianceIndirection.length; ++k) {
  194.             final ParameterDriversList orbitDrivers      = builders.get(k).getOrbitalParametersDrivers();
  195.             final ParameterDriversList parametersDrivers = builders.get(k).getPropagationParametersDrivers();
  196.             Arrays.fill(covarianceIndirection[k], -1);
  197.             int i = 0;
  198.             for (final ParameterDriver driver : orbitDrivers.getDrivers()) {
  199.                 final Integer c = orbitalParameterColumns.get(driver.getName());
  200.                 covarianceIndirection[k][i++] = (c == null) ? -1 : c.intValue();
  201.             }
  202.             for (final ParameterDriver driver : parametersDrivers.getDrivers()) {
  203.                 final Integer c = propagationParameterColumns.get(driver.getName());
  204.                 if (c != null) {
  205.                     covarianceIndirection[k][i++] = c.intValue();
  206.                 }
  207.             }
  208.             for (final ParameterDriver driver : estimatedMeasurementParameters.getDrivers()) {
  209.                 final Integer c = measurementParameterColumns.get(driver.getName());
  210.                 if (c != null) {
  211.                     covarianceIndirection[k][i++] = c.intValue();
  212.                 }
  213.             }
  214.         }

  215.         // Compute the scale factors
  216.         this.scale = new double[columns];
  217.         int index = 0;
  218.         for (final ParameterDriver driver : allEstimatedOrbitalParameters.getDrivers()) {
  219.             scale[index++] = driver.getScale();
  220.         }
  221.         for (final ParameterDriver driver : allEstimatedPropagationParameters.getDrivers()) {
  222.             scale[index++] = driver.getScale();
  223.         }
  224.         for (final ParameterDriver driver : estimatedMeasurementsParameters.getDrivers()) {
  225.             scale[index++] = driver.getScale();
  226.         }

  227.         // Build the reference propagators and add their partial derivatives equations implementation
  228.         mappers = new JacobiansMapper[builders.size()];
  229.         updateReferenceTrajectories(getEstimatedPropagators());
  230.         this.predictedSpacecraftStates = new SpacecraftState[referenceTrajectories.length];
  231.         for (int i = 0; i < predictedSpacecraftStates.length; ++i) {
  232.             predictedSpacecraftStates[i] = referenceTrajectories[i].getInitialState();
  233.         };
  234.         this.correctedSpacecraftStates = predictedSpacecraftStates.clone();

  235.         // Initialize the estimated normalized state and fill its values
  236.         final RealVector correctedState      = MatrixUtils.createRealVector(columns);

  237.         int p = 0;
  238.         for (final ParameterDriver driver : allEstimatedOrbitalParameters.getDrivers()) {
  239.             correctedState.setEntry(p++, driver.getNormalizedValue());
  240.         }
  241.         for (final ParameterDriver driver : allEstimatedPropagationParameters.getDrivers()) {
  242.             correctedState.setEntry(p++, driver.getNormalizedValue());
  243.         }
  244.         for (final ParameterDriver driver : estimatedMeasurementsParameters.getDrivers()) {
  245.             correctedState.setEntry(p++, driver.getNormalizedValue());
  246.         }

  247.         // Set up initial covariance
  248.         final RealMatrix physicalProcessNoise = MatrixUtils.createRealMatrix(columns, columns);
  249.         for (int k = 0; k < covarianceMatricesProviders.size(); ++k) {

  250.             // Number of estimated measurement parameters
  251.             final int nbMeas = estimatedMeasurementParameters.getNbParams();

  252.             // Number of estimated dynamic parameters (orbital + propagation)
  253.             final int nbDyn  = orbitsEndColumns[k] - orbitsStartColumns[k] +
  254.                                estimatedPropagationParameters[k].getNbParams();

  255.             // Covariance matrix
  256.             final RealMatrix noiseK = MatrixUtils.createRealMatrix(nbDyn + nbMeas, nbDyn + nbMeas);
  257.             final RealMatrix noiseP = covarianceMatricesProviders.get(k).
  258.                                       getInitialCovarianceMatrix(correctedSpacecraftStates[k]);
  259.             noiseK.setSubMatrix(noiseP.getData(), 0, 0);
  260.             if (measurementProcessNoiseMatrix != null) {
  261.                 final RealMatrix noiseM = measurementProcessNoiseMatrix.
  262.                                           getInitialCovarianceMatrix(correctedSpacecraftStates[k]);
  263.                 noiseK.setSubMatrix(noiseM.getData(), nbDyn, nbDyn);
  264.             }

  265.             checkDimension(noiseK.getRowDimension(),
  266.                            builders.get(k).getOrbitalParametersDrivers(),
  267.                            builders.get(k).getPropagationParametersDrivers(),
  268.                            estimatedMeasurementsParameters);

  269.             final int[] indK = covarianceIndirection[k];
  270.             for (int i = 0; i < indK.length; ++i) {
  271.                 if (indK[i] >= 0) {
  272.                     for (int j = 0; j < indK.length; ++j) {
  273.                         if (indK[j] >= 0) {
  274.                             physicalProcessNoise.setEntry(indK[i], indK[j], noiseK.getEntry(i, j));
  275.                         }
  276.                     }
  277.                 }
  278.             }

  279.         }
  280.         final RealMatrix correctedCovariance = normalizeCovarianceMatrix(physicalProcessNoise);

  281.         correctedEstimate = new ProcessEstimate(0.0, correctedState, correctedCovariance);

  282.     }

  283.     /** Check dimension.
  284.      * @param dimension dimension to check
  285.      * @param orbitalParameters orbital parameters
  286.      * @param propagationParameters propagation parameters
  287.      * @param measurementParameters measurements parameters
  288.      */
  289.     private void checkDimension(final int dimension,
  290.                                 final ParameterDriversList orbitalParameters,
  291.                                 final ParameterDriversList propagationParameters,
  292.                                 final ParameterDriversList measurementParameters) {

  293.         // count parameters, taking care of counting all orbital parameters
  294.         // regardless of them being estimated or not
  295.         int requiredDimension = orbitalParameters.getNbParams();
  296.         for (final ParameterDriver driver : propagationParameters.getDrivers()) {
  297.             if (driver.isSelected()) {
  298.                 ++requiredDimension;
  299.             }
  300.         }
  301.         for (final ParameterDriver driver : measurementParameters.getDrivers()) {
  302.             if (driver.isSelected()) {
  303.                 ++requiredDimension;
  304.             }
  305.         }

  306.         if (dimension != requiredDimension) {
  307.             // there is a problem, set up an explicit error message
  308.             final StringBuilder builder = new StringBuilder();
  309.             for (final ParameterDriver driver : orbitalParameters.getDrivers()) {
  310.                 if (builder.length() > 0) {
  311.                     builder.append(", ");
  312.                 }
  313.                 builder.append(driver.getName());
  314.             }
  315.             for (final ParameterDriver driver : propagationParameters.getDrivers()) {
  316.                 if (driver.isSelected()) {
  317.                     builder.append(driver.getName());
  318.                 }
  319.             }
  320.             for (final ParameterDriver driver : measurementParameters.getDrivers()) {
  321.                 if (driver.isSelected()) {
  322.                     builder.append(driver.getName());
  323.                 }
  324.             }
  325.             throw new OrekitException(OrekitMessages.DIMENSION_INCONSISTENT_WITH_PARAMETERS,
  326.                                       dimension, builder.toString());
  327.         }

  328.     }

  329.     /** {@inheritDoc} */
  330.     @Override
  331.     public SpacecraftState[] getPredictedSpacecraftStates() {
  332.         return predictedSpacecraftStates.clone();
  333.     }

  334.     /** {@inheritDoc} */
  335.     @Override
  336.     public SpacecraftState[] getCorrectedSpacecraftStates() {
  337.         return correctedSpacecraftStates.clone();
  338.     }

  339.     /** {@inheritDoc} */
  340.     @Override
  341.     public RealMatrix getPhysicalStateTransitionMatrix() {
  342.         //  Un-normalize the state transition matrix (φ) from Hipparchus and return it.
  343.         // φ is an mxm matrix where m = nbOrb + nbPropag + nbMeas
  344.         // For each element [i,j] of normalized φ (φn), the corresponding physical value is:
  345.         // φ[i,j] = φn[i,j] * scale[i] / scale[j]

  346.         // Normalized matrix
  347.         final RealMatrix normalizedSTM = correctedEstimate.getStateTransitionMatrix();

  348.         if (normalizedSTM == null) {
  349.             return null;
  350.         } else {
  351.             // Initialize physical matrix
  352.             final int nbParams = normalizedSTM.getRowDimension();
  353.             final RealMatrix physicalSTM = MatrixUtils.createRealMatrix(nbParams, nbParams);

  354.             // Un-normalize the matrix
  355.             for (int i = 0; i < nbParams; ++i) {
  356.                 for (int j = 0; j < nbParams; ++j) {
  357.                     physicalSTM.setEntry(i, j,
  358.                                          normalizedSTM.getEntry(i, j) * scale[i] / scale[j]);
  359.                 }
  360.             }
  361.             return physicalSTM;
  362.         }
  363.     }

  364.     /** {@inheritDoc} */
  365.     @Override
  366.     public RealMatrix getPhysicalMeasurementJacobian() {
  367.         // Un-normalize the measurement matrix (H) from Hipparchus and return it.
  368.         // H is an nxm matrix where:
  369.         //  - m = nbOrb + nbPropag + nbMeas is the number of estimated parameters
  370.         //  - n is the size of the measurement being processed by the filter
  371.         // For each element [i,j] of normalized H (Hn) the corresponding physical value is:
  372.         // H[i,j] = Hn[i,j] * σ[i] / scale[j]

  373.         // Normalized matrix
  374.         final RealMatrix normalizedH = correctedEstimate.getMeasurementJacobian();

  375.         if (normalizedH == null) {
  376.             return null;
  377.         } else {
  378.             // Get current measurement sigmas
  379.             final double[] sigmas = correctedMeasurement.getObservedMeasurement().getTheoreticalStandardDeviation();

  380.             // Initialize physical matrix
  381.             final int nbLine = normalizedH.getRowDimension();
  382.             final int nbCol  = normalizedH.getColumnDimension();
  383.             final RealMatrix physicalH = MatrixUtils.createRealMatrix(nbLine, nbCol);

  384.             // Un-normalize the matrix
  385.             for (int i = 0; i < nbLine; ++i) {
  386.                 for (int j = 0; j < nbCol; ++j) {
  387.                     physicalH.setEntry(i, j, normalizedH.getEntry(i, j) * sigmas[i] / scale[j]);
  388.                 }
  389.             }
  390.             return physicalH;
  391.         }
  392.     }

  393.     /** {@inheritDoc} */
  394.     @Override
  395.     public RealMatrix getPhysicalInnovationCovarianceMatrix() {
  396.         // Un-normalize the innovation covariance matrix (S) from Hipparchus and return it.
  397.         // S is an nxn matrix where n is the size of the measurement being processed by the filter
  398.         // For each element [i,j] of normalized S (Sn) the corresponding physical value is:
  399.         // S[i,j] = Sn[i,j] * σ[i] * σ[j]

  400.         // Normalized matrix
  401.         final RealMatrix normalizedS = correctedEstimate.getInnovationCovariance();

  402.         if (normalizedS == null) {
  403.             return null;
  404.         } else {
  405.             // Get current measurement sigmas
  406.             final double[] sigmas = correctedMeasurement.getObservedMeasurement().getTheoreticalStandardDeviation();

  407.             // Initialize physical matrix
  408.             final int nbMeas = sigmas.length;
  409.             final RealMatrix physicalS = MatrixUtils.createRealMatrix(nbMeas, nbMeas);

  410.             // Un-normalize the matrix
  411.             for (int i = 0; i < nbMeas; ++i) {
  412.                 for (int j = 0; j < nbMeas; ++j) {
  413.                     physicalS.setEntry(i, j, normalizedS.getEntry(i, j) * sigmas[i] *   sigmas[j]);
  414.                 }
  415.             }
  416.             return physicalS;
  417.         }
  418.     }

  419.     /** {@inheritDoc} */
  420.     @Override
  421.     public RealMatrix getPhysicalKalmanGain() {
  422.         // Un-normalize the Kalman gain (K) from Hipparchus and return it.
  423.         // K is an mxn matrix where:
  424.         //  - m = nbOrb + nbPropag + nbMeas is the number of estimated parameters
  425.         //  - n is the size of the measurement being processed by the filter
  426.         // For each element [i,j] of normalized K (Kn) the corresponding physical value is:
  427.         // K[i,j] = Kn[i,j] * scale[i] / σ[j]

  428.         // Normalized matrix
  429.         final RealMatrix normalizedK = correctedEstimate.getKalmanGain();

  430.         if (normalizedK == null) {
  431.             return null;
  432.         } else {
  433.             // Get current measurement sigmas
  434.             final double[] sigmas = correctedMeasurement.getObservedMeasurement().getTheoreticalStandardDeviation();

  435.             // Initialize physical matrix
  436.             final int nbLine = normalizedK.getRowDimension();
  437.             final int nbCol  = normalizedK.getColumnDimension();
  438.             final RealMatrix physicalK = MatrixUtils.createRealMatrix(nbLine, nbCol);

  439.             // Un-normalize the matrix
  440.             for (int i = 0; i < nbLine; ++i) {
  441.                 for (int j = 0; j < nbCol; ++j) {
  442.                     physicalK.setEntry(i, j, normalizedK.getEntry(i, j) * scale[i] / sigmas[j]);
  443.                 }
  444.             }
  445.             return physicalK;
  446.         }
  447.     }

  448.     /** {@inheritDoc} */
  449.     @Override
  450.     public int getCurrentMeasurementNumber() {
  451.         return currentMeasurementNumber;
  452.     }

  453.     /** {@inheritDoc} */
  454.     @Override
  455.     public AbsoluteDate getCurrentDate() {
  456.         return currentDate;
  457.     }

  458.     /** {@inheritDoc} */
  459.     @Override
  460.     public EstimatedMeasurement<?> getPredictedMeasurement() {
  461.         return predictedMeasurement;
  462.     }

  463.     /** {@inheritDoc} */
  464.     @Override
  465.     public EstimatedMeasurement<?> getCorrectedMeasurement() {
  466.         return correctedMeasurement;
  467.     }

  468.     /** {@inheritDoc} */
  469.     @Override
  470.     public RealVector getPhysicalEstimatedState() {
  471.         // Method {@link ParameterDriver#getValue()} is used to get
  472.         // the physical values of the state.
  473.         // The scales'array is used to get the size of the state vector
  474.         final RealVector physicalEstimatedState = new ArrayRealVector(scale.length);
  475.         int i = 0;
  476.         for (final DelegatingDriver driver : getEstimatedOrbitalParameters().getDrivers()) {
  477.             physicalEstimatedState.setEntry(i++, driver.getValue());
  478.         }
  479.         for (final DelegatingDriver driver : getEstimatedPropagationParameters().getDrivers()) {
  480.             physicalEstimatedState.setEntry(i++, driver.getValue());
  481.         }
  482.         for (final DelegatingDriver driver : getEstimatedMeasurementsParameters().getDrivers()) {
  483.             physicalEstimatedState.setEntry(i++, driver.getValue());
  484.         }

  485.         return physicalEstimatedState;
  486.     }

  487.     /** {@inheritDoc} */
  488.     @Override
  489.     public RealMatrix getPhysicalEstimatedCovarianceMatrix() {
  490.         // Un-normalize the estimated covariance matrix (P) from Hipparchus and return it.
  491.         // The covariance P is an mxm matrix where m = nbOrb + nbPropag + nbMeas
  492.         // For each element [i,j] of P the corresponding normalized value is:
  493.         // Pn[i,j] = P[i,j] / (scale[i]*scale[j])
  494.         // Consequently: P[i,j] = Pn[i,j] * scale[i] * scale[j]

  495.         // Normalized covariance matrix
  496.         final RealMatrix normalizedP = correctedEstimate.getCovariance();

  497.         // Initialize physical covariance matrix
  498.         final int nbParams = normalizedP.getRowDimension();
  499.         final RealMatrix physicalP = MatrixUtils.createRealMatrix(nbParams, nbParams);

  500.         // Un-normalize the covairance matrix
  501.         for (int i = 0; i < nbParams; ++i) {
  502.             for (int j = 0; j < nbParams; ++j) {
  503.                 physicalP.setEntry(i, j, normalizedP.getEntry(i, j) * scale[i] * scale[j]);
  504.             }
  505.         }
  506.         return physicalP;
  507.     }

  508.     /** {@inheritDoc} */
  509.     @Override
  510.     public ParameterDriversList getEstimatedOrbitalParameters() {
  511.         return allEstimatedOrbitalParameters;
  512.     }

  513.     /** {@inheritDoc} */
  514.     @Override
  515.     public ParameterDriversList getEstimatedPropagationParameters() {
  516.         return allEstimatedPropagationParameters;
  517.     }

  518.     /** {@inheritDoc} */
  519.     @Override
  520.     public ParameterDriversList getEstimatedMeasurementsParameters() {
  521.         return estimatedMeasurementsParameters;
  522.     }

  523.     /** {@inheritDoc} */
  524.     public ProcessEstimate getEstimate() {
  525.         return correctedEstimate;
  526.     }

  527.     /** {@inheritDoc} */
  528.     public NumericalPropagator[] getEstimatedPropagators() {

  529.         // Return propagators built with current instantiation of the propagator builders
  530.         final NumericalPropagator[] propagators = new NumericalPropagator[builders.size()];
  531.         for (int k = 0; k < builders.size(); ++k) {
  532.             propagators[k] = (NumericalPropagator) builders.get(k).buildPropagator(builders.get(k).getSelectedNormalizedParameters());
  533.         }
  534.         return propagators;
  535.     }

  536.     /** Get the normalized error state transition matrix (STM) from previous point to current point.
  537.      * The STM contains the partial derivatives of current state with respect to previous state.
  538.      * The  STM is an mxm matrix where m is the size of the state vector.
  539.      * m = nbOrb + nbPropag + nbMeas
  540.      * @return the normalized error state transition matrix
  541.      */
  542.     private RealMatrix getErrorStateTransitionMatrix() {

  543.         /* The state transition matrix is obtained as follows, with:
  544.          *  - Y  : Current state vector
  545.          *  - Y0 : Initial state vector
  546.          *  - Pp : Current propagation parameter
  547.          *  - Pp0: Initial propagation parameter
  548.          *  - Mp : Current measurement parameter
  549.          *  - Mp0: Initial measurement parameter
  550.          *
  551.          *       |        |         |         |   |        |        |   .    |
  552.          *       | dY/dY0 | dY/dPp  | dY/dMp  |   | dY/dY0 | dY/dPp | ..0..  |
  553.          *       |        |         |         |   |        |        |   .    |
  554.          *       |--------|---------|---------|   |--------|--------|--------|
  555.          *       |        |         |         |   |   .    | 1 0 0..|   .    |
  556.          * STM = | dP/dY0 | dP/dPp0 | dP/dMp  | = | ..0..  | 0 1 0..| ..0..  |
  557.          *       |        |         |         |   |   .    | 0 0 1..|   .    |
  558.          *       |--------|---------|---------|   |--------|--------|--------|
  559.          *       |        |         |         |   |   .    |   .    | 1 0 0..|
  560.          *       | dM/dY0 | dM/dPp0 | dM/dMp0 |   | ..0..  | ..0..  | 0 1 0..|
  561.          *       |        |         |         |   |   .    |   .    | 0 0 1..|
  562.          */

  563.         // Initialize to the proper size identity matrix
  564.         final RealMatrix stm = MatrixUtils.createRealIdentityMatrix(correctedEstimate.getState().getDimension());

  565.         // loop over all orbits
  566.         for (int k = 0; k < predictedSpacecraftStates.length; ++k) {

  567.             // Derivatives of the state vector with respect to initial state vector
  568.             final double[][] dYdY0 = new double[6][6];
  569.             mappers[k].getStateJacobian(predictedSpacecraftStates[k], dYdY0 );

  570.             // Fill upper left corner (dY/dY0)
  571.             final List<ParameterDriversList.DelegatingDriver> drivers =
  572.                             builders.get(k).getOrbitalParametersDrivers().getDrivers();
  573.             for (int i = 0; i < dYdY0.length; ++i) {
  574.                 if (drivers.get(i).isSelected()) {
  575.                     int jOrb = orbitsStartColumns[k];
  576.                     for (int j = 0; j < dYdY0[i].length; ++j) {
  577.                         if (drivers.get(j).isSelected()) {
  578.                             stm.setEntry(i, jOrb++, dYdY0[i][j]);
  579.                         }
  580.                     }
  581.                 }
  582.             }

  583.             // Derivatives of the state vector with respect to propagation parameters
  584.             final int nbParams = estimatedPropagationParameters[k].getNbParams();
  585.             if (nbParams > 0) {
  586.                 final double[][] dYdPp  = new double[6][nbParams];
  587.                 mappers[k].getParametersJacobian(predictedSpacecraftStates[k], dYdPp);

  588.                 // Fill 1st row, 2nd column (dY/dPp)
  589.                 for (int i = 0; i < dYdPp.length; ++i) {
  590.                     for (int j = 0; j < nbParams; ++j) {
  591.                         stm.setEntry(i, orbitsEndColumns[k] + j, dYdPp[i][j]);
  592.                     }
  593.                 }

  594.             }

  595.         }

  596.         // Normalization of the STM
  597.         // normalized(STM)ij = STMij*Sj/Si
  598.         for (int i = 0; i < scale.length; i++) {
  599.             for (int j = 0; j < scale.length; j++ ) {
  600.                 stm.setEntry(i, j, stm.getEntry(i, j) * scale[j] / scale[i]);
  601.             }
  602.         }

  603.         // Return the error state transition matrix
  604.         return stm;

  605.     }

  606.     /** Get the normalized measurement matrix H.
  607.      * H contains the partial derivatives of the measurement with respect to the state.
  608.      * H is an nxm matrix where n is the size of the measurement vector and m the size of the state vector.
  609.      * @return the normalized measurement matrix H
  610.      */
  611.     private RealMatrix getMeasurementMatrix() {

  612.         // Observed measurement characteristics
  613.         final SpacecraftState[]      evaluationStates    = predictedMeasurement.getStates();
  614.         final ObservedMeasurement<?> observedMeasurement = predictedMeasurement.getObservedMeasurement();
  615.         final double[] sigma  = observedMeasurement.getTheoreticalStandardDeviation();

  616.         // Initialize measurement matrix H: nxm
  617.         // n: Number of measurements in current measurement
  618.         // m: State vector size
  619.         final RealMatrix measurementMatrix = MatrixUtils.
  620.                         createRealMatrix(observedMeasurement.getDimension(),
  621.                                          correctedEstimate.getState().getDimension());

  622.         // loop over all orbits involved in the measurement
  623.         for (int k = 0; k < evaluationStates.length; ++k) {
  624.             final int p = observedMeasurement.getSatellites().get(k).getPropagatorIndex();

  625.             // Predicted orbit
  626.             final Orbit predictedOrbit = evaluationStates[k].getOrbit();

  627.             // Measurement matrix's columns related to orbital parameters
  628.             // ----------------------------------------------------------

  629.             // Partial derivatives of the current Cartesian coordinates with respect to current orbital state
  630.             final double[][] aCY = new double[6][6];
  631.             predictedOrbit.getJacobianWrtParameters(builders.get(p).getPositionAngle(), aCY);   //dC/dY
  632.             final RealMatrix dCdY = new Array2DRowRealMatrix(aCY, false);

  633.             // Jacobian of the measurement with respect to current Cartesian coordinates
  634.             final RealMatrix dMdC = new Array2DRowRealMatrix(predictedMeasurement.getStateDerivatives(k), false);

  635.             // Jacobian of the measurement with respect to current orbital state
  636.             final RealMatrix dMdY = dMdC.multiply(dCdY);

  637.             // Fill the normalized measurement matrix's columns related to estimated orbital parameters
  638.             for (int i = 0; i < dMdY.getRowDimension(); ++i) {
  639.                 int jOrb = orbitsStartColumns[p];
  640.                 for (int j = 0; j < dMdY.getColumnDimension(); ++j) {
  641.                     final ParameterDriver driver = builders.get(p).getOrbitalParametersDrivers().getDrivers().get(j);
  642.                     if (driver.isSelected()) {
  643.                         measurementMatrix.setEntry(i, jOrb++,
  644.                                                    dMdY.getEntry(i, j) / sigma[i] * driver.getScale());
  645.                     }
  646.                 }
  647.             }

  648.             // Normalized measurement matrix's columns related to propagation parameters
  649.             // --------------------------------------------------------------

  650.             // Jacobian of the measurement with respect to propagation parameters
  651.             final int nbParams = estimatedPropagationParameters[p].getNbParams();
  652.             if (nbParams > 0) {
  653.                 final double[][] aYPp  = new double[6][nbParams];
  654.                 mappers[p].getParametersJacobian(evaluationStates[k], aYPp);
  655.                 final RealMatrix dYdPp = new Array2DRowRealMatrix(aYPp, false);
  656.                 final RealMatrix dMdPp = dMdY.multiply(dYdPp);
  657.                 for (int i = 0; i < dMdPp.getRowDimension(); ++i) {
  658.                     for (int j = 0; j < nbParams; ++j) {
  659.                         final ParameterDriver delegating = estimatedPropagationParameters[p].getDrivers().get(j);
  660.                         measurementMatrix.setEntry(i, propagationParameterColumns.get(delegating.getName()),
  661.                                                    dMdPp.getEntry(i, j) / sigma[i] * delegating.getScale());
  662.                     }
  663.                 }
  664.             }

  665.             // Normalized measurement matrix's columns related to measurement parameters
  666.             // --------------------------------------------------------------

  667.             // Jacobian of the measurement with respect to measurement parameters
  668.             // Gather the measurement parameters linked to current measurement
  669.             for (final ParameterDriver driver : observedMeasurement.getParametersDrivers()) {
  670.                 if (driver.isSelected()) {
  671.                     // Derivatives of current measurement w/r to selected measurement parameter
  672.                     final double[] aMPm = predictedMeasurement.getParameterDerivatives(driver);

  673.                     // Check that the measurement parameter is managed by the filter
  674.                     if (measurementParameterColumns.get(driver.getName()) != null) {
  675.                         // Column of the driver in the measurement matrix
  676.                         final int driverColumn = measurementParameterColumns.get(driver.getName());

  677.                         // Fill the corresponding indexes of the measurement matrix
  678.                         for (int i = 0; i < aMPm.length; ++i) {
  679.                             measurementMatrix.setEntry(i, driverColumn,
  680.                                                        aMPm[i] / sigma[i] * driver.getScale());
  681.                         }
  682.                     }
  683.                 }
  684.             }
  685.         }

  686.         // Return the normalized measurement matrix
  687.         return measurementMatrix;

  688.     }


  689.     /** Update the reference trajectories using the propagators as input.
  690.      * @param propagators The new propagators to use
  691.     */
  692.     private void updateReferenceTrajectories(final NumericalPropagator[] propagators) {

  693.         // Update the reference trajectory propagator
  694.         referenceTrajectories = propagators;

  695.         for (int k = 0; k < propagators.length; ++k) {
  696.             // Link the partial derivatives to this new propagator
  697.             final String equationName = KalmanEstimator.class.getName() + "-derivatives-" + k;
  698.             final PartialDerivativesEquations pde = new PartialDerivativesEquations(equationName, referenceTrajectories[k]);

  699.             // Reset the Jacobians
  700.             final SpacecraftState rawState = referenceTrajectories[k].getInitialState();
  701.             final SpacecraftState stateWithDerivatives = pde.setInitialJacobians(rawState);
  702.             referenceTrajectories[k].resetInitialState(stateWithDerivatives);
  703.             mappers[k] = pde.getMapper();
  704.         }

  705.     }

  706.     /** Normalize a covariance matrix.
  707.      * The covariance P is an mxm matrix where m = nbOrb + nbPropag + nbMeas
  708.      * For each element [i,j] of P the corresponding normalized value is:
  709.      * Pn[i,j] = P[i,j] / (scale[i]*scale[j])
  710.      * @param physicalCovarianceMatrix The "physical" covariance matrix in input
  711.      * @return the normalized covariance matrix
  712.      */
  713.     private RealMatrix normalizeCovarianceMatrix(final RealMatrix physicalCovarianceMatrix) {

  714.         // Initialize output matrix
  715.         final int nbParams = physicalCovarianceMatrix.getRowDimension();
  716.         final RealMatrix normalizedCovarianceMatrix = MatrixUtils.createRealMatrix(nbParams, nbParams);

  717.         // Normalize the state matrix
  718.         for (int i = 0; i < nbParams; ++i) {
  719.             for (int j = 0; j < nbParams; ++j) {
  720.                 normalizedCovarianceMatrix.setEntry(i, j,
  721.                                                     physicalCovarianceMatrix.getEntry(i, j) /
  722.                                                     (scale[i] * scale[j]));
  723.             }
  724.         }
  725.         return normalizedCovarianceMatrix;
  726.     }

  727.     /** Set and apply a dynamic outlier filter on a measurement.<p>
  728.      * Loop on the modifiers to see if a dynamic outlier filter needs to be applied.<p>
  729.      * Compute the sigma array using the matrix in input and set the filter.<p>
  730.      * Apply the filter by calling the modify method on the estimated measurement.<p>
  731.      * Reset the filter.
  732.      * @param measurement measurement to filter
  733.      * @param innovationCovarianceMatrix So called innovation covariance matrix S, with:<p>
  734.      *        S = H.Ppred.Ht + R<p>
  735.      *        Where:<p>
  736.      *         - H is the normalized measurement matrix (Ht its transpose)<p>
  737.      *         - Ppred is the normalized predicted covariance matrix<p>
  738.      *         - R is the normalized measurement noise matrix
  739.      * @param <T> the type of measurement
  740.      */
  741.     private <T extends ObservedMeasurement<T>> void applyDynamicOutlierFilter(final EstimatedMeasurement<T> measurement,
  742.                                                                               final RealMatrix innovationCovarianceMatrix) {

  743.         // Observed measurement associated to the predicted measurement
  744.         final ObservedMeasurement<T> observedMeasurement = measurement.getObservedMeasurement();

  745.         // Check if a dynamic filter was added to the measurement
  746.         // If so, update its sigma value and apply it
  747.         for (EstimationModifier<T> modifier : observedMeasurement.getModifiers()) {
  748.             if (modifier instanceof DynamicOutlierFilter<?>) {
  749.                 final DynamicOutlierFilter<T> dynamicOutlierFilter = (DynamicOutlierFilter<T>) modifier;

  750.                 // Initialize the values of the sigma array used in the dynamic filter
  751.                 final double[] sigmaDynamic     = new double[innovationCovarianceMatrix.getColumnDimension()];
  752.                 final double[] sigmaMeasurement = observedMeasurement.getTheoreticalStandardDeviation();

  753.                 // Set the sigma value for each element of the measurement
  754.                 // Here we do use the value suggested by David A. Vallado (see [1]§10.6):
  755.                 // sigmaDynamic[i] = sqrt(diag(S))*sigma[i]
  756.                 // With S = H.Ppred.Ht + R
  757.                 // Where:
  758.                 //  - S is the measurement error matrix in input
  759.                 //  - H is the normalized measurement matrix (Ht its transpose)
  760.                 //  - Ppred is the normalized predicted covariance matrix
  761.                 //  - R is the normalized measurement noise matrix
  762.                 //  - sigma[i] is the theoretical standard deviation of the ith component of the measurement.
  763.                 //    It is used here to un-normalize the value before it is filtered
  764.                 for (int i = 0; i < sigmaDynamic.length; i++) {
  765.                     sigmaDynamic[i] = FastMath.sqrt(innovationCovarianceMatrix.getEntry(i, i)) * sigmaMeasurement[i];
  766.                 }
  767.                 dynamicOutlierFilter.setSigma(sigmaDynamic);

  768.                 // Apply the modifier on the estimated measurement
  769.                 modifier.modify(measurement);

  770.                 // Re-initialize the value of the filter for the next measurement of the same type
  771.                 dynamicOutlierFilter.setSigma(null);
  772.             }
  773.         }
  774.     }

  775.     /** {@inheritDoc} */
  776.     @Override
  777.     public NonLinearEvolution getEvolution(final double previousTime, final RealVector previousState,
  778.                                            final MeasurementDecorator measurement) {

  779.         // Set a reference date for all measurements parameters that lack one (including the not estimated ones)
  780.         final ObservedMeasurement<?> observedMeasurement = measurement.getObservedMeasurement();
  781.         for (final ParameterDriver driver : observedMeasurement.getParametersDrivers()) {
  782.             if (driver.getReferenceDate() == null) {
  783.                 driver.setReferenceDate(builders.get(0).getInitialOrbitDate());
  784.             }
  785.         }

  786.         ++currentMeasurementNumber;
  787.         currentDate = measurement.getObservedMeasurement().getDate();

  788.         // Note:
  789.         // - n = size of the current measurement
  790.         //  Example:
  791.         //   * 1 for Range, RangeRate and TurnAroundRange
  792.         //   * 2 for Angular (Azimuth/Elevation or Right-ascension/Declination)
  793.         //   * 6 for Position/Velocity
  794.         // - m = size of the state vector. n = nbOrb + nbPropag + nbMeas

  795.         // Predict the state vector (mx1)
  796.         final RealVector predictedState = predictState(observedMeasurement.getDate());

  797.         // Get the error state transition matrix (mxm)
  798.         final RealMatrix stateTransitionMatrix = getErrorStateTransitionMatrix();

  799.         // Predict the measurement based on predicted spacecraft state
  800.         // Compute the innovations (i.e. residuals of the predicted measurement)
  801.         // ------------------------------------------------------------

  802.         // Predicted measurement
  803.         // Note: here the "iteration/evaluation" formalism from the batch LS method
  804.         // is twisted to fit the need of the Kalman filter.
  805.         // The number of "iterations" is actually the number of measurements processed by the filter
  806.         // so far. We use this to be able to apply the OutlierFilter modifiers on the predicted measurement.
  807.         predictedMeasurement = observedMeasurement.estimate(currentMeasurementNumber,
  808.                                                             currentMeasurementNumber,
  809.                                                             filterRelevant(observedMeasurement, predictedSpacecraftStates));

  810.         // Normalized measurement matrix (nxm)
  811.         final RealMatrix measurementMatrix = getMeasurementMatrix();

  812.         // compute process noise matrix
  813.         final RealMatrix physicalProcessNoise = MatrixUtils.createRealMatrix(previousState.getDimension(),
  814.                                                                              previousState.getDimension());
  815.         for (int k = 0; k < covarianceMatricesProviders.size(); ++k) {

  816.             // Number of estimated measurement parameters
  817.             final int nbMeas = estimatedMeasurementsParameters.getNbParams();

  818.             // Number of estimated dynamic parameters (orbital + propagation)
  819.             final int nbDyn  = orbitsEndColumns[k] - orbitsStartColumns[k] +
  820.                                estimatedPropagationParameters[k].getNbParams();

  821.             // Covariance matrix
  822.             final RealMatrix noiseK = MatrixUtils.createRealMatrix(nbDyn + nbMeas, nbDyn + nbMeas);
  823.             final RealMatrix noiseP = covarianceMatricesProviders.get(k).
  824.                                       getProcessNoiseMatrix(correctedSpacecraftStates[k],
  825.                                                             predictedSpacecraftStates[k]);
  826.             noiseK.setSubMatrix(noiseP.getData(), 0, 0);
  827.             if (measurementProcessNoiseMatrix != null) {
  828.                 final RealMatrix noiseM = measurementProcessNoiseMatrix.
  829.                                           getProcessNoiseMatrix(correctedSpacecraftStates[k],
  830.                                                                 predictedSpacecraftStates[k]);
  831.                 noiseK.setSubMatrix(noiseM.getData(), nbDyn, nbDyn);
  832.             }

  833.             checkDimension(noiseK.getRowDimension(),
  834.                            builders.get(k).getOrbitalParametersDrivers(),
  835.                            builders.get(k).getPropagationParametersDrivers(),
  836.                            estimatedMeasurementsParameters);

  837.             final int[] indK = covarianceIndirection[k];
  838.             for (int i = 0; i < indK.length; ++i) {
  839.                 if (indK[i] >= 0) {
  840.                     for (int j = 0; j < indK.length; ++j) {
  841.                         if (indK[j] >= 0) {
  842.                             physicalProcessNoise.setEntry(indK[i], indK[j], noiseK.getEntry(i, j));
  843.                         }
  844.                     }
  845.                 }
  846.             }

  847.         }
  848.         final RealMatrix normalizedProcessNoise = normalizeCovarianceMatrix(physicalProcessNoise);

  849.         return new NonLinearEvolution(measurement.getTime(), predictedState,
  850.                                       stateTransitionMatrix, normalizedProcessNoise, measurementMatrix);

  851.     }

  852.     /** {@inheritDoc} */
  853.     @Override
  854.     public RealVector getInnovation(final MeasurementDecorator measurement, final NonLinearEvolution evolution,
  855.                                     final RealMatrix innovationCovarianceMatrix) {

  856.         // Apply the dynamic outlier filter, if it exists
  857.         applyDynamicOutlierFilter(predictedMeasurement, innovationCovarianceMatrix);
  858.         if (predictedMeasurement.getStatus() == EstimatedMeasurement.Status.REJECTED)  {
  859.             // set innovation to null to notify filter measurement is rejected
  860.             return null;
  861.         } else {
  862.             // Normalized innovation of the measurement (Nx1)
  863.             final double[] observed  = predictedMeasurement.getObservedMeasurement().getObservedValue();
  864.             final double[] estimated = predictedMeasurement.getEstimatedValue();
  865.             final double[] sigma     = predictedMeasurement.getObservedMeasurement().getTheoreticalStandardDeviation();
  866.             final double[] residuals = new double[observed.length];

  867.             for (int i = 0; i < observed.length; i++) {
  868.                 residuals[i] = (observed[i] - estimated[i]) / sigma[i];
  869.             }
  870.             return MatrixUtils.createRealVector(residuals);
  871.         }
  872.     }

  873.     /** {@inheritDoc} */
  874.     public void finalizeEstimation(final ObservedMeasurement<?> observedMeasurement,
  875.                                    final ProcessEstimate estimate) {
  876.         // Update the parameters with the estimated state
  877.         // The min/max values of the parameters are handled by the ParameterDriver implementation
  878.         correctedEstimate = estimate;
  879.         updateParameters();

  880.         // Get the estimated propagator (mirroring parameter update in the builder)
  881.         // and the estimated spacecraft state
  882.         final NumericalPropagator[] estimatedPropagators = getEstimatedPropagators();
  883.         for (int k = 0; k < estimatedPropagators.length; ++k) {
  884.             correctedSpacecraftStates[k] = estimatedPropagators[k].getInitialState();
  885.         }

  886.         // Compute the estimated measurement using estimated spacecraft state
  887.         correctedMeasurement = observedMeasurement.estimate(currentMeasurementNumber,
  888.                                                             currentMeasurementNumber,
  889.                                                             filterRelevant(observedMeasurement, correctedSpacecraftStates));
  890.         // Update the trajectory
  891.         // ---------------------
  892.         updateReferenceTrajectories(estimatedPropagators);

  893.     }

  894.     /** Filter relevant states for a measurement.
  895.      * @param observedMeasurement measurement to consider
  896.      * @param allStates all states
  897.      * @return array containing only the states relevant to the measurement
  898.      * @since 10.1
  899.      */
  900.     private SpacecraftState[] filterRelevant(final ObservedMeasurement<?> observedMeasurement, final SpacecraftState[] allStates) {
  901.         final List<ObservableSatellite> satellites = observedMeasurement.getSatellites();
  902.         final SpacecraftState[] relevantStates = new SpacecraftState[satellites.size()];
  903.         for (int i = 0; i < relevantStates.length; ++i) {
  904.             relevantStates[i] = allStates[satellites.get(i).getPropagatorIndex()];
  905.         }
  906.         return relevantStates;
  907.     }

  908.     /** Set the predicted normalized state vector.
  909.      * The predicted/propagated orbit is used to update the state vector
  910.      * @param date prediction date
  911.      * @return predicted state
  912.      */
  913.     private RealVector predictState(final AbsoluteDate date) {

  914.         // Predicted state is initialized to previous estimated state
  915.         final RealVector predictedState = correctedEstimate.getState().copy();

  916.         // Orbital parameters counter
  917.         int jOrb = 0;

  918.         for (int k = 0; k < predictedSpacecraftStates.length; ++k) {

  919.             // Propagate the reference trajectory to measurement date
  920.             predictedSpacecraftStates[k] = referenceTrajectories[k].propagate(date);

  921.             // Update the builder with the predicted orbit
  922.             // This updates the orbital drivers with the values of the predicted orbit
  923.             builders.get(k).resetOrbit(predictedSpacecraftStates[k].getOrbit());

  924.             // The orbital parameters in the state vector are replaced with their predicted values
  925.             // The propagation & measurement parameters are not changed by the prediction (i.e. the propagation)
  926.             // As the propagator builder was previously updated with the predicted orbit,
  927.             // the selected orbital drivers are already up to date with the prediction
  928.             for (DelegatingDriver orbitalDriver : builders.get(k).getOrbitalParametersDrivers().getDrivers()) {
  929.                 if (orbitalDriver.isSelected()) {
  930.                     predictedState.setEntry(jOrb++, orbitalDriver.getNormalizedValue());
  931.                 }
  932.             }

  933.         }

  934.         return predictedState;

  935.     }

  936.     /** Update the estimated parameters after the correction phase of the filter.
  937.      * The min/max allowed values are handled by the parameter themselves.
  938.      */
  939.     private void updateParameters() {
  940.         final RealVector correctedState = correctedEstimate.getState();
  941.         int i = 0;
  942.         for (final DelegatingDriver driver : getEstimatedOrbitalParameters().getDrivers()) {
  943.             // let the parameter handle min/max clipping
  944.             driver.setNormalizedValue(correctedState.getEntry(i));
  945.             correctedState.setEntry(i++, driver.getNormalizedValue());
  946.         }
  947.         for (final DelegatingDriver driver : getEstimatedPropagationParameters().getDrivers()) {
  948.             // let the parameter handle min/max clipping
  949.             driver.setNormalizedValue(correctedState.getEntry(i));
  950.             correctedState.setEntry(i++, driver.getNormalizedValue());
  951.         }
  952.         for (final DelegatingDriver driver : getEstimatedMeasurementsParameters().getDrivers()) {
  953.             // let the parameter handle min/max clipping
  954.             driver.setNormalizedValue(correctedState.getEntry(i));
  955.             correctedState.setEntry(i++, driver.getNormalizedValue());
  956.         }
  957.     }

  958. }