AbstractKalmanModel.java

  1. /* Copyright 2002-2021 CS GROUP
  2.  * Licensed to CS GROUP (CS) under one or more
  3.  * contributor license agreements.  See the NOTICE file distributed with
  4.  * this work for additional information regarding copyright ownership.
  5.  * CS licenses this file to You under the Apache License, Version 2.0
  6.  * (the "License"); you may not use this file except in compliance with
  7.  * the License.  You may obtain a copy of the License at
  8.  *
  9.  *   http://www.apache.org/licenses/LICENSE-2.0
  10.  *
  11.  * Unless required by applicable law or agreed to in writing, software
  12.  * distributed under the License is distributed on an "AS IS" BASIS,
  13.  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  14.  * See the License for the specific language governing permissions and
  15.  * limitations under the License.
  16.  */
  17. package org.orekit.estimation.sequential;

  18. import java.util.ArrayList;
  19. import java.util.Arrays;
  20. import java.util.Comparator;
  21. import java.util.HashMap;
  22. import java.util.List;
  23. import java.util.Map;

  24. import org.hipparchus.filtering.kalman.ProcessEstimate;
  25. import org.hipparchus.filtering.kalman.extended.NonLinearEvolution;
  26. import org.hipparchus.filtering.kalman.extended.NonLinearProcess;
  27. import org.hipparchus.linear.Array2DRowRealMatrix;
  28. import org.hipparchus.linear.ArrayRealVector;
  29. import org.hipparchus.linear.MatrixUtils;
  30. import org.hipparchus.linear.RealMatrix;
  31. import org.hipparchus.linear.RealVector;
  32. import org.hipparchus.util.FastMath;
  33. import org.orekit.errors.OrekitException;
  34. import org.orekit.errors.OrekitMessages;
  35. import org.orekit.estimation.measurements.EstimatedMeasurement;
  36. import org.orekit.estimation.measurements.EstimationModifier;
  37. import org.orekit.estimation.measurements.ObservableSatellite;
  38. import org.orekit.estimation.measurements.ObservedMeasurement;
  39. import org.orekit.estimation.measurements.modifiers.DynamicOutlierFilter;
  40. import org.orekit.orbits.Orbit;
  41. import org.orekit.propagation.PropagationType;
  42. import org.orekit.propagation.Propagator;
  43. import org.orekit.propagation.SpacecraftState;
  44. import org.orekit.propagation.conversion.OrbitDeterminationPropagatorBuilder;
  45. import org.orekit.propagation.integration.AbstractJacobiansMapper;
  46. import org.orekit.time.AbsoluteDate;
  47. import org.orekit.utils.ParameterDriver;
  48. import org.orekit.utils.ParameterDriversList;
  49. import org.orekit.utils.ParameterDriversList.DelegatingDriver;

  50. /** Abstract class defining the process model dynamics to use with a {@link KalmanEstimator}.
  51.  * @author Romain Gerbaud
  52.  * @author Maxime Journot
  53.  * @author Bryan Cazabonne
  54.  * @author Thomas Paulet
  55.  * @since 11.0
  56.  */
  57. public abstract class AbstractKalmanModel implements KalmanEstimation, NonLinearProcess<MeasurementDecorator> {

  58.     /** Builders for propagators. */
  59.     private final List<OrbitDeterminationPropagatorBuilder> builders;

  60.     /** Estimated orbital parameters. */
  61.     private final ParameterDriversList allEstimatedOrbitalParameters;

  62.     /** Estimated propagation drivers. */
  63.     private final ParameterDriversList allEstimatedPropagationParameters;

  64.     /** Per-builder estimated propagation drivers. */
  65.     private final ParameterDriversList[] estimatedPropagationParameters;

  66.     /** Estimated measurements parameters. */
  67.     private final ParameterDriversList estimatedMeasurementsParameters;

  68.     /** Start columns for each estimated orbit. */
  69.     private final int[] orbitsStartColumns;

  70.     /** End columns for each estimated orbit. */
  71.     private final int[] orbitsEndColumns;

  72.     /** Map for propagation parameters columns. */
  73.     private final Map<String, Integer> propagationParameterColumns;

  74.     /** Map for measurements parameters columns. */
  75.     private final Map<String, Integer> measurementParameterColumns;

  76.     /** Providers for covariance matrices. */
  77.     private final List<CovarianceMatrixProvider> covarianceMatricesProviders;

  78.     /** Process noise matrix provider for measurement parameters. */
  79.     private final CovarianceMatrixProvider measurementProcessNoiseMatrix;

  80.     /** Indirection arrays to extract the noise components for estimated parameters. */
  81.     private final int[][] covarianceIndirection;

  82.     /** Scaling factors. */
  83.     private final double[] scale;

  84.     /** Mappers for extracting Jacobians from integrated states. */
  85.     private AbstractJacobiansMapper[] mappers;

  86.     /** Propagators for the reference trajectories, up to current date. */
  87.     private Propagator[] referenceTrajectories;

  88.     /** Current corrected estimate. */
  89.     private ProcessEstimate correctedEstimate;

  90.     /** Current number of measurement. */
  91.     private int currentMeasurementNumber;

  92.     /** Reference date. */
  93.     private AbsoluteDate referenceDate;

  94.     /** Current date. */
  95.     private AbsoluteDate currentDate;

  96.     /** Predicted spacecraft states. */
  97.     private SpacecraftState[] predictedSpacecraftStates;

  98.     /** Corrected spacecraft states. */
  99.     private SpacecraftState[] correctedSpacecraftStates;

  100.     /** Predicted measurement. */
  101.     private EstimatedMeasurement<?> predictedMeasurement;

  102.     /** Corrected measurement. */
  103.     private EstimatedMeasurement<?> correctedMeasurement;

  104.     /** Type of the orbit used for the propagation.*/
  105.     private PropagationType propagationType;

  106.     /** Type of the elements used to define the orbital state.*/
  107.     private PropagationType stateType;

  108.     /** Kalman process model constructor (package private).
  109.      * This constructor is used whenever state type and propagation type do not matter.
  110.      * It is used for {@link KalmanModel} and {@link TLEKalmanModel}.
  111.      * @param propagatorBuilders propagators builders used to evaluate the orbits.
  112.      * @param covarianceMatricesProviders providers for covariance matrices
  113.      * @param estimatedMeasurementParameters measurement parameters to estimate
  114.      * @param measurementProcessNoiseMatrix provider for measurement process noise matrix
  115.      * @param mappers mappers for extracting Jacobians from integrated states
  116.      */
  117.     protected AbstractKalmanModel(final List<OrbitDeterminationPropagatorBuilder> propagatorBuilders,
  118.                                   final List<CovarianceMatrixProvider> covarianceMatricesProviders,
  119.                                   final ParameterDriversList estimatedMeasurementParameters,
  120.                                   final CovarianceMatrixProvider measurementProcessNoiseMatrix,
  121.                                   final AbstractJacobiansMapper[] mappers) {
  122.         this(propagatorBuilders, covarianceMatricesProviders, estimatedMeasurementParameters,
  123.              measurementProcessNoiseMatrix, mappers, PropagationType.MEAN, PropagationType.MEAN);
  124.     }

  125.     /** Kalman process model constructor (package private).
  126.      * This constructor is used whenever propagation type and/or state type are to be specified.
  127.      * It is used for {@link DSSTKalmanModel}.
  128.      * @param propagatorBuilders propagators builders used to evaluate the orbits.
  129.      * @param covarianceMatricesProviders providers for covariance matrices
  130.      * @param estimatedMeasurementParameters measurement parameters to estimate
  131.      * @param measurementProcessNoiseMatrix provider for measurement process noise matrix
  132.      * @param mappers mappers for extracting Jacobians from integrated states
  133.      * @param propagationType type of the orbit used for the propagation (mean or osculating), applicable only for DSST
  134.      * @param stateType type of the elements used to define the orbital state (mean or osculating), applicable only for DSST
  135.      */
  136.     protected AbstractKalmanModel(final List<OrbitDeterminationPropagatorBuilder> propagatorBuilders,
  137.                                   final List<CovarianceMatrixProvider> covarianceMatricesProviders,
  138.                                   final ParameterDriversList estimatedMeasurementParameters,
  139.                                   final CovarianceMatrixProvider measurementProcessNoiseMatrix,
  140.                                   final AbstractJacobiansMapper[] mappers,
  141.                                   final PropagationType propagationType,
  142.                                   final PropagationType stateType) {

  143.         this.builders                        = propagatorBuilders;
  144.         this.estimatedMeasurementsParameters = estimatedMeasurementParameters;
  145.         this.measurementParameterColumns     = new HashMap<>(estimatedMeasurementsParameters.getDrivers().size());
  146.         this.currentMeasurementNumber        = 0;
  147.         this.referenceDate                   = propagatorBuilders.get(0).getInitialOrbitDate();
  148.         this.currentDate                     = referenceDate;
  149.         this.propagationType                 = propagationType;
  150.         this.stateType                       = stateType;

  151.         final Map<String, Integer> orbitalParameterColumns = new HashMap<>(6 * builders.size());
  152.         orbitsStartColumns      = new int[builders.size()];
  153.         orbitsEndColumns        = new int[builders.size()];
  154.         int columns = 0;
  155.         allEstimatedOrbitalParameters = new ParameterDriversList();
  156.         for (int k = 0; k < builders.size(); ++k) {
  157.             orbitsStartColumns[k] = columns;
  158.             final String suffix = propagatorBuilders.size() > 1 ? "[" + k + "]" : null;
  159.             for (final ParameterDriver driver : builders.get(k).getOrbitalParametersDrivers().getDrivers()) {
  160.                 if (driver.getReferenceDate() == null) {
  161.                     driver.setReferenceDate(currentDate);
  162.                 }
  163.                 if (suffix != null && !driver.getName().endsWith(suffix)) {
  164.                     // we add suffix only conditionally because the method may already have been called
  165.                     // and suffixes may have already been appended
  166.                     driver.setName(driver.getName() + suffix);
  167.                 }
  168.                 if (driver.isSelected()) {
  169.                     allEstimatedOrbitalParameters.add(driver);
  170.                     orbitalParameterColumns.put(driver.getName(), columns++);
  171.                 }
  172.             }
  173.             orbitsEndColumns[k] = columns;
  174.         }

  175.         // Gather all the propagation drivers names in a list
  176.         allEstimatedPropagationParameters = new ParameterDriversList();
  177.         estimatedPropagationParameters    = new ParameterDriversList[builders.size()];
  178.         final List<String> estimatedPropagationParametersNames = new ArrayList<>();
  179.         for (int k = 0; k < builders.size(); ++k) {
  180.             estimatedPropagationParameters[k] = new ParameterDriversList();
  181.             for (final ParameterDriver driver : builders.get(k).getPropagationParametersDrivers().getDrivers()) {
  182.                 if (driver.getReferenceDate() == null) {
  183.                     driver.setReferenceDate(currentDate);
  184.                 }
  185.                 if (driver.isSelected()) {
  186.                     allEstimatedPropagationParameters.add(driver);
  187.                     estimatedPropagationParameters[k].add(driver);
  188.                     final String driverName = driver.getName();
  189.                     // Add the driver name if it has not been added yet
  190.                     if (!estimatedPropagationParametersNames.contains(driverName)) {
  191.                         estimatedPropagationParametersNames.add(driverName);
  192.                     }
  193.                 }
  194.             }
  195.         }
  196.         estimatedPropagationParametersNames.sort(Comparator.naturalOrder());

  197.         // Populate the map of propagation drivers' columns and update the total number of columns
  198.         propagationParameterColumns = new HashMap<>(estimatedPropagationParametersNames.size());
  199.         for (final String driverName : estimatedPropagationParametersNames) {
  200.             propagationParameterColumns.put(driverName, columns);
  201.             ++columns;
  202.         }

  203.         // Populate the map of measurement drivers' columns and update the total number of columns
  204.         for (final ParameterDriver parameter : estimatedMeasurementsParameters.getDrivers()) {
  205.             if (parameter.getReferenceDate() == null) {
  206.                 parameter.setReferenceDate(currentDate);
  207.             }
  208.             measurementParameterColumns.put(parameter.getName(), columns);
  209.             ++columns;
  210.         }

  211.         // Store providers for process noise matrices
  212.         this.covarianceMatricesProviders = covarianceMatricesProviders;
  213.         this.measurementProcessNoiseMatrix = measurementProcessNoiseMatrix;
  214.         this.covarianceIndirection       = new int[covarianceMatricesProviders.size()][columns];
  215.         for (int k = 0; k < covarianceIndirection.length; ++k) {
  216.             final ParameterDriversList orbitDrivers      = builders.get(k).getOrbitalParametersDrivers();
  217.             final ParameterDriversList parametersDrivers = builders.get(k).getPropagationParametersDrivers();
  218.             Arrays.fill(covarianceIndirection[k], -1);
  219.             int i = 0;
  220.             for (final ParameterDriver driver : orbitDrivers.getDrivers()) {
  221.                 final Integer c = orbitalParameterColumns.get(driver.getName());
  222.                 covarianceIndirection[k][i++] = (c == null) ? -1 : c.intValue();
  223.             }
  224.             for (final ParameterDriver driver : parametersDrivers.getDrivers()) {
  225.                 final Integer c = propagationParameterColumns.get(driver.getName());
  226.                 if (c != null) {
  227.                     covarianceIndirection[k][i++] = c.intValue();
  228.                 }
  229.             }
  230.             for (final ParameterDriver driver : estimatedMeasurementParameters.getDrivers()) {
  231.                 final Integer c = measurementParameterColumns.get(driver.getName());
  232.                 if (c != null) {
  233.                     covarianceIndirection[k][i++] = c.intValue();
  234.                 }
  235.             }
  236.         }

  237.         // Compute the scale factors
  238.         this.scale = new double[columns];
  239.         int index = 0;
  240.         for (final ParameterDriver driver : allEstimatedOrbitalParameters.getDrivers()) {
  241.             scale[index++] = driver.getScale();
  242.         }
  243.         for (final ParameterDriver driver : allEstimatedPropagationParameters.getDrivers()) {
  244.             scale[index++] = driver.getScale();
  245.         }
  246.         for (final ParameterDriver driver : estimatedMeasurementsParameters.getDrivers()) {
  247.             scale[index++] = driver.getScale();
  248.         }

  249.         // Build the reference propagators and add their partial derivatives equations implementation
  250.         this.mappers = mappers.clone();
  251.         updateReferenceTrajectories(getEstimatedPropagators(), propagationType, stateType);
  252.         this.predictedSpacecraftStates = new SpacecraftState[referenceTrajectories.length];
  253.         for (int i = 0; i < predictedSpacecraftStates.length; ++i) {
  254.             predictedSpacecraftStates[i] = referenceTrajectories[i].getInitialState();
  255.         };
  256.         this.correctedSpacecraftStates = predictedSpacecraftStates.clone();

  257.         // Initialize the estimated normalized state and fill its values
  258.         final RealVector correctedState      = MatrixUtils.createRealVector(columns);

  259.         int p = 0;
  260.         for (final ParameterDriver driver : allEstimatedOrbitalParameters.getDrivers()) {
  261.             correctedState.setEntry(p++, driver.getNormalizedValue());
  262.         }
  263.         for (final ParameterDriver driver : allEstimatedPropagationParameters.getDrivers()) {
  264.             correctedState.setEntry(p++, driver.getNormalizedValue());
  265.         }
  266.         for (final ParameterDriver driver : estimatedMeasurementsParameters.getDrivers()) {
  267.             correctedState.setEntry(p++, driver.getNormalizedValue());
  268.         }

  269.         // Set up initial covariance
  270.         final RealMatrix physicalProcessNoise = MatrixUtils.createRealMatrix(columns, columns);
  271.         for (int k = 0; k < covarianceMatricesProviders.size(); ++k) {

  272.             // Number of estimated measurement parameters
  273.             final int nbMeas = estimatedMeasurementParameters.getNbParams();

  274.             // Number of estimated dynamic parameters (orbital + propagation)
  275.             final int nbDyn  = orbitsEndColumns[k] - orbitsStartColumns[k] +
  276.                                estimatedPropagationParameters[k].getNbParams();

  277.             // Covariance matrix
  278.             final RealMatrix noiseK = MatrixUtils.createRealMatrix(nbDyn + nbMeas, nbDyn + nbMeas);
  279.             final RealMatrix noiseP = covarianceMatricesProviders.get(k).
  280.                                       getInitialCovarianceMatrix(correctedSpacecraftStates[k]);
  281.             noiseK.setSubMatrix(noiseP.getData(), 0, 0);
  282.             if (measurementProcessNoiseMatrix != null) {
  283.                 final RealMatrix noiseM = measurementProcessNoiseMatrix.
  284.                                           getInitialCovarianceMatrix(correctedSpacecraftStates[k]);
  285.                 noiseK.setSubMatrix(noiseM.getData(), nbDyn, nbDyn);
  286.             }

  287.             checkDimension(noiseK.getRowDimension(),
  288.                            builders.get(k).getOrbitalParametersDrivers(),
  289.                            builders.get(k).getPropagationParametersDrivers(),
  290.                            estimatedMeasurementsParameters);

  291.             final int[] indK = covarianceIndirection[k];
  292.             for (int i = 0; i < indK.length; ++i) {
  293.                 if (indK[i] >= 0) {
  294.                     for (int j = 0; j < indK.length; ++j) {
  295.                         if (indK[j] >= 0) {
  296.                             physicalProcessNoise.setEntry(indK[i], indK[j], noiseK.getEntry(i, j));
  297.                         }
  298.                     }
  299.                 }
  300.             }

  301.         }
  302.         final RealMatrix correctedCovariance = normalizeCovarianceMatrix(physicalProcessNoise);

  303.         correctedEstimate = new ProcessEstimate(0.0, correctedState, correctedCovariance);

  304.     }

  305.     /** Update the reference trajectories using the propagators as input.
  306.      * @param propagators The new propagators to use
  307.      * @param pType propagationType type of the orbit used for the propagation (mean or osculating)
  308.      * @param sType type of the elements used to define the orbital state (mean or osculating)
  309.      */
  310.     protected abstract void updateReferenceTrajectories(Propagator[] propagators,
  311.                                                         PropagationType pType,
  312.                                                         PropagationType sType);

  313.     /** Analytical computation of derivatives.
  314.      * This method allow to compute analytical derivatives.
  315.      * @param mapper Jacobian mapper to calculate short period perturbations
  316.      * @param state state used to calculate short period perturbations
  317.      */
  318.     protected abstract void analyticalDerivativeComputations(AbstractJacobiansMapper mapper, SpacecraftState state);

  319.     /** Check dimension.
  320.      * @param dimension dimension to check
  321.      * @param orbitalParameters orbital parameters
  322.      * @param propagationParameters propagation parameters
  323.      * @param measurementParameters measurements parameters
  324.      */
  325.     private void checkDimension(final int dimension,
  326.                                 final ParameterDriversList orbitalParameters,
  327.                                 final ParameterDriversList propagationParameters,
  328.                                 final ParameterDriversList measurementParameters) {

  329.         // count parameters, taking care of counting all orbital parameters
  330.         // regardless of them being estimated or not
  331.         int requiredDimension = orbitalParameters.getNbParams();
  332.         for (final ParameterDriver driver : propagationParameters.getDrivers()) {
  333.             if (driver.isSelected()) {
  334.                 ++requiredDimension;
  335.             }
  336.         }
  337.         for (final ParameterDriver driver : measurementParameters.getDrivers()) {
  338.             if (driver.isSelected()) {
  339.                 ++requiredDimension;
  340.             }
  341.         }

  342.         if (dimension != requiredDimension) {
  343.             // there is a problem, set up an explicit error message
  344.             final StringBuilder builder = new StringBuilder();
  345.             for (final ParameterDriver driver : orbitalParameters.getDrivers()) {
  346.                 if (builder.length() > 0) {
  347.                     builder.append(", ");
  348.                 }
  349.                 builder.append(driver.getName());
  350.             }
  351.             for (final ParameterDriver driver : propagationParameters.getDrivers()) {
  352.                 if (driver.isSelected()) {
  353.                     builder.append(driver.getName());
  354.                 }
  355.             }
  356.             for (final ParameterDriver driver : measurementParameters.getDrivers()) {
  357.                 if (driver.isSelected()) {
  358.                     builder.append(driver.getName());
  359.                 }
  360.             }
  361.             throw new OrekitException(OrekitMessages.DIMENSION_INCONSISTENT_WITH_PARAMETERS,
  362.                                       dimension, builder.toString());
  363.         }

  364.     }

  365.     /** {@inheritDoc} */
  366.     @Override
  367.     public RealMatrix getPhysicalStateTransitionMatrix() {
  368.         //  Un-normalize the state transition matrix (φ) from Hipparchus and return it.
  369.         // φ is an mxm matrix where m = nbOrb + nbPropag + nbMeas
  370.         // For each element [i,j] of normalized φ (φn), the corresponding physical value is:
  371.         // φ[i,j] = φn[i,j] * scale[i] / scale[j]

  372.         // Normalized matrix
  373.         final RealMatrix normalizedSTM = correctedEstimate.getStateTransitionMatrix();

  374.         if (normalizedSTM == null) {
  375.             return null;
  376.         } else {
  377.             // Initialize physical matrix
  378.             final int nbParams = normalizedSTM.getRowDimension();
  379.             final RealMatrix physicalSTM = MatrixUtils.createRealMatrix(nbParams, nbParams);

  380.             // Un-normalize the matrix
  381.             for (int i = 0; i < nbParams; ++i) {
  382.                 for (int j = 0; j < nbParams; ++j) {
  383.                     physicalSTM.setEntry(i, j,
  384.                                          normalizedSTM.getEntry(i, j) * scale[i] / scale[j]);
  385.                 }
  386.             }
  387.             return physicalSTM;
  388.         }
  389.     }

  390.     /** {@inheritDoc} */
  391.     @Override
  392.     public RealMatrix getPhysicalMeasurementJacobian() {
  393.         // Un-normalize the measurement matrix (H) from Hipparchus and return it.
  394.         // H is an nxm matrix where:
  395.         //  - m = nbOrb + nbPropag + nbMeas is the number of estimated parameters
  396.         //  - n is the size of the measurement being processed by the filter
  397.         // For each element [i,j] of normalized H (Hn) the corresponding physical value is:
  398.         // H[i,j] = Hn[i,j] * σ[i] / scale[j]

  399.         // Normalized matrix
  400.         final RealMatrix normalizedH = correctedEstimate.getMeasurementJacobian();

  401.         if (normalizedH == null) {
  402.             return null;
  403.         } else {
  404.             // Get current measurement sigmas
  405.             final double[] sigmas = correctedMeasurement.getObservedMeasurement().getTheoreticalStandardDeviation();

  406.             // Initialize physical matrix
  407.             final int nbLine = normalizedH.getRowDimension();
  408.             final int nbCol  = normalizedH.getColumnDimension();
  409.             final RealMatrix physicalH = MatrixUtils.createRealMatrix(nbLine, nbCol);

  410.             // Un-normalize the matrix
  411.             for (int i = 0; i < nbLine; ++i) {
  412.                 for (int j = 0; j < nbCol; ++j) {
  413.                     physicalH.setEntry(i, j, normalizedH.getEntry(i, j) * sigmas[i] / scale[j]);
  414.                 }
  415.             }
  416.             return physicalH;
  417.         }
  418.     }

  419.     /** {@inheritDoc} */
  420.     @Override
  421.     public RealMatrix getPhysicalInnovationCovarianceMatrix() {
  422.         // Un-normalize the innovation covariance matrix (S) from Hipparchus and return it.
  423.         // S is an nxn matrix where n is the size of the measurement being processed by the filter
  424.         // For each element [i,j] of normalized S (Sn) the corresponding physical value is:
  425.         // S[i,j] = Sn[i,j] * σ[i] * σ[j]

  426.         // Normalized matrix
  427.         final RealMatrix normalizedS = correctedEstimate.getInnovationCovariance();

  428.         if (normalizedS == null) {
  429.             return null;
  430.         } else {
  431.             // Get current measurement sigmas
  432.             final double[] sigmas = correctedMeasurement.getObservedMeasurement().getTheoreticalStandardDeviation();

  433.             // Initialize physical matrix
  434.             final int nbMeas = sigmas.length;
  435.             final RealMatrix physicalS = MatrixUtils.createRealMatrix(nbMeas, nbMeas);

  436.             // Un-normalize the matrix
  437.             for (int i = 0; i < nbMeas; ++i) {
  438.                 for (int j = 0; j < nbMeas; ++j) {
  439.                     physicalS.setEntry(i, j, normalizedS.getEntry(i, j) * sigmas[i] *   sigmas[j]);
  440.                 }
  441.             }
  442.             return physicalS;
  443.         }
  444.     }

  445.     /** {@inheritDoc} */
  446.     @Override
  447.     public RealMatrix getPhysicalKalmanGain() {
  448.         // Un-normalize the Kalman gain (K) from Hipparchus and return it.
  449.         // K is an mxn matrix where:
  450.         //  - m = nbOrb + nbPropag + nbMeas is the number of estimated parameters
  451.         //  - n is the size of the measurement being processed by the filter
  452.         // For each element [i,j] of normalized K (Kn) the corresponding physical value is:
  453.         // K[i,j] = Kn[i,j] * scale[i] / σ[j]

  454.         // Normalized matrix
  455.         final RealMatrix normalizedK = correctedEstimate.getKalmanGain();

  456.         if (normalizedK == null) {
  457.             return null;
  458.         } else {
  459.             // Get current measurement sigmas
  460.             final double[] sigmas = correctedMeasurement.getObservedMeasurement().getTheoreticalStandardDeviation();

  461.             // Initialize physical matrix
  462.             final int nbLine = normalizedK.getRowDimension();
  463.             final int nbCol  = normalizedK.getColumnDimension();
  464.             final RealMatrix physicalK = MatrixUtils.createRealMatrix(nbLine, nbCol);

  465.             // Un-normalize the matrix
  466.             for (int i = 0; i < nbLine; ++i) {
  467.                 for (int j = 0; j < nbCol; ++j) {
  468.                     physicalK.setEntry(i, j, normalizedK.getEntry(i, j) * scale[i] / sigmas[j]);
  469.                 }
  470.             }
  471.             return physicalK;
  472.         }
  473.     }

  474.     /** {@inheritDoc} */
  475.     @Override
  476.     public SpacecraftState[] getPredictedSpacecraftStates() {
  477.         return predictedSpacecraftStates.clone();
  478.     }

  479.     /** {@inheritDoc} */
  480.     @Override
  481.     public SpacecraftState[] getCorrectedSpacecraftStates() {
  482.         return correctedSpacecraftStates.clone();
  483.     }

  484.     /** {@inheritDoc} */
  485.     @Override
  486.     public int getCurrentMeasurementNumber() {
  487.         return currentMeasurementNumber;
  488.     }

  489.     /** {@inheritDoc} */
  490.     @Override
  491.     public AbsoluteDate getCurrentDate() {
  492.         return currentDate;
  493.     }

  494.     /** {@inheritDoc} */
  495.     @Override
  496.     public EstimatedMeasurement<?> getPredictedMeasurement() {
  497.         return predictedMeasurement;
  498.     }

  499.     /** {@inheritDoc} */
  500.     @Override
  501.     public EstimatedMeasurement<?> getCorrectedMeasurement() {
  502.         return correctedMeasurement;
  503.     }

  504.     /** {@inheritDoc} */
  505.     @Override
  506.     public RealVector getPhysicalEstimatedState() {
  507.         // Method {@link ParameterDriver#getValue()} is used to get
  508.         // the physical values of the state.
  509.         // The scales'array is used to get the size of the state vector
  510.         final RealVector physicalEstimatedState = new ArrayRealVector(scale.length);
  511.         int i = 0;
  512.         for (final DelegatingDriver driver : getEstimatedOrbitalParameters().getDrivers()) {
  513.             physicalEstimatedState.setEntry(i++, driver.getValue());
  514.         }
  515.         for (final DelegatingDriver driver : getEstimatedPropagationParameters().getDrivers()) {
  516.             physicalEstimatedState.setEntry(i++, driver.getValue());
  517.         }
  518.         for (final DelegatingDriver driver : getEstimatedMeasurementsParameters().getDrivers()) {
  519.             physicalEstimatedState.setEntry(i++, driver.getValue());
  520.         }

  521.         return physicalEstimatedState;
  522.     }

  523.     /** {@inheritDoc} */
  524.     @Override
  525.     public RealMatrix getPhysicalEstimatedCovarianceMatrix() {
  526.         // Un-normalize the estimated covariance matrix (P) from Hipparchus and return it.
  527.         // The covariance P is an mxm matrix where m = nbOrb + nbPropag + nbMeas
  528.         // For each element [i,j] of P the corresponding normalized value is:
  529.         // Pn[i,j] = P[i,j] / (scale[i]*scale[j])
  530.         // Consequently: P[i,j] = Pn[i,j] * scale[i] * scale[j]

  531.         // Normalized covariance matrix
  532.         final RealMatrix normalizedP = correctedEstimate.getCovariance();

  533.         // Initialize physical covariance matrix
  534.         final int nbParams = normalizedP.getRowDimension();
  535.         final RealMatrix physicalP = MatrixUtils.createRealMatrix(nbParams, nbParams);

  536.         // Un-normalize the covairance matrix
  537.         for (int i = 0; i < nbParams; ++i) {
  538.             for (int j = 0; j < nbParams; ++j) {
  539.                 physicalP.setEntry(i, j, normalizedP.getEntry(i, j) * scale[i] * scale[j]);
  540.             }
  541.         }
  542.         return physicalP;
  543.     }

  544.     /** {@inheritDoc} */
  545.     @Override
  546.     public ParameterDriversList getEstimatedOrbitalParameters() {
  547.         return allEstimatedOrbitalParameters;
  548.     }

  549.     /** {@inheritDoc} */
  550.     @Override
  551.     public ParameterDriversList getEstimatedPropagationParameters() {
  552.         return allEstimatedPropagationParameters;
  553.     }

  554.     /** {@inheritDoc} */
  555.     @Override
  556.     public ParameterDriversList getEstimatedMeasurementsParameters() {
  557.         return estimatedMeasurementsParameters;
  558.     }

  559.     /** Get the current corrected estimate.
  560.      * @return current corrected estimate
  561.      */
  562.     public ProcessEstimate getEstimate() {
  563.         return correctedEstimate;
  564.     }

  565.     /** Get the normalized error state transition matrix (STM) from previous point to current point.
  566.      * The STM contains the partial derivatives of current state with respect to previous state.
  567.      * The  STM is an mxm matrix where m is the size of the state vector.
  568.      * m = nbOrb + nbPropag + nbMeas
  569.      * @return the normalized error state transition matrix
  570.      */
  571.     private RealMatrix getErrorStateTransitionMatrix() {

  572.         /* The state transition matrix is obtained as follows, with:
  573.          *  - Y  : Current state vector
  574.          *  - Y0 : Initial state vector
  575.          *  - Pp : Current propagation parameter
  576.          *  - Pp0: Initial propagation parameter
  577.          *  - Mp : Current measurement parameter
  578.          *  - Mp0: Initial measurement parameter
  579.          *
  580.          *       |        |         |         |   |        |        |   .    |
  581.          *       | dY/dY0 | dY/dPp  | dY/dMp  |   | dY/dY0 | dY/dPp | ..0..  |
  582.          *       |        |         |         |   |        |        |   .    |
  583.          *       |--------|---------|---------|   |--------|--------|--------|
  584.          *       |        |         |         |   |   .    | 1 0 0..|   .    |
  585.          * STM = | dP/dY0 | dP/dPp0 | dP/dMp  | = | ..0..  | 0 1 0..| ..0..  |
  586.          *       |        |         |         |   |   .    | 0 0 1..|   .    |
  587.          *       |--------|---------|---------|   |--------|--------|--------|
  588.          *       |        |         |         |   |   .    |   .    | 1 0 0..|
  589.          *       | dM/dY0 | dM/dPp0 | dM/dMp0 |   | ..0..  | ..0..  | 0 1 0..|
  590.          *       |        |         |         |   |   .    |   .    | 0 0 1..|
  591.          */

  592.         // Initialize to the proper size identity matrix
  593.         final RealMatrix stm = MatrixUtils.createRealIdentityMatrix(correctedEstimate.getState().getDimension());

  594.         // loop over all orbits
  595.         for (int k = 0; k < predictedSpacecraftStates.length; ++k) {

  596.             // Short period derivatives
  597.             analyticalDerivativeComputations(mappers[k], predictedSpacecraftStates[k]);

  598.             // Derivatives of the state vector with respect to initial state vector
  599.             final double[][] dYdY0 = new double[6][6];
  600.             mappers[k].getStateJacobian(predictedSpacecraftStates[k], dYdY0 );

  601.             // Fill upper left corner (dY/dY0)
  602.             final List<ParameterDriversList.DelegatingDriver> drivers =
  603.                             builders.get(k).getOrbitalParametersDrivers().getDrivers();
  604.             for (int i = 0; i < dYdY0.length; ++i) {
  605.                 if (drivers.get(i).isSelected()) {
  606.                     int jOrb = orbitsStartColumns[k];
  607.                     for (int j = 0; j < dYdY0[i].length; ++j) {
  608.                         if (drivers.get(j).isSelected()) {
  609.                             stm.setEntry(i, jOrb++, dYdY0[i][j]);
  610.                         }
  611.                     }
  612.                 }
  613.             }

  614.             // Derivatives of the state vector with respect to propagation parameters
  615.             final int nbParams = estimatedPropagationParameters[k].getNbParams();
  616.             if (nbParams > 0) {
  617.                 final double[][] dYdPp  = new double[6][nbParams];
  618.                 mappers[k].getParametersJacobian(predictedSpacecraftStates[k], dYdPp);

  619.                 // Fill 1st row, 2nd column (dY/dPp)
  620.                 for (int i = 0; i < dYdPp.length; ++i) {
  621.                     for (int j = 0; j < nbParams; ++j) {
  622.                         stm.setEntry(i, orbitsEndColumns[k] + j, dYdPp[i][j]);
  623.                     }
  624.                 }

  625.             }

  626.         }

  627.         // Normalization of the STM
  628.         // normalized(STM)ij = STMij*Sj/Si
  629.         for (int i = 0; i < scale.length; i++) {
  630.             for (int j = 0; j < scale.length; j++ ) {
  631.                 stm.setEntry(i, j, stm.getEntry(i, j) * scale[j] / scale[i]);
  632.             }
  633.         }

  634.         // Return the error state transition matrix
  635.         return stm;

  636.     }

  637.     /** Get the normalized measurement matrix H.
  638.      * H contains the partial derivatives of the measurement with respect to the state.
  639.      * H is an nxm matrix where n is the size of the measurement vector and m the size of the state vector.
  640.      * @return the normalized measurement matrix H
  641.      */
  642.     private RealMatrix getMeasurementMatrix() {

  643.         // Observed measurement characteristics
  644.         final SpacecraftState[]      evaluationStates    = predictedMeasurement.getStates();
  645.         final ObservedMeasurement<?> observedMeasurement = predictedMeasurement.getObservedMeasurement();
  646.         final double[] sigma  = observedMeasurement.getTheoreticalStandardDeviation();

  647.         // Initialize measurement matrix H: nxm
  648.         // n: Number of measurements in current measurement
  649.         // m: State vector size
  650.         final RealMatrix measurementMatrix = MatrixUtils.
  651.                         createRealMatrix(observedMeasurement.getDimension(),
  652.                                          correctedEstimate.getState().getDimension());

  653.         // loop over all orbits involved in the measurement
  654.         for (int k = 0; k < evaluationStates.length; ++k) {
  655.             final int p = observedMeasurement.getSatellites().get(k).getPropagatorIndex();

  656.             // Predicted orbit
  657.             final Orbit predictedOrbit = evaluationStates[k].getOrbit();

  658.             // Measurement matrix's columns related to orbital parameters
  659.             // ----------------------------------------------------------

  660.             // Partial derivatives of the current Cartesian coordinates with respect to current orbital state
  661.             final double[][] aCY = new double[6][6];
  662.             predictedOrbit.getJacobianWrtParameters(builders.get(p).getPositionAngle(), aCY);   //dC/dY
  663.             final RealMatrix dCdY = new Array2DRowRealMatrix(aCY, false);

  664.             // Jacobian of the measurement with respect to current Cartesian coordinates
  665.             final RealMatrix dMdC = new Array2DRowRealMatrix(predictedMeasurement.getStateDerivatives(k), false);

  666.             // Jacobian of the measurement with respect to current orbital state
  667.             final RealMatrix dMdY = dMdC.multiply(dCdY);

  668.             // Fill the normalized measurement matrix's columns related to estimated orbital parameters
  669.             for (int i = 0; i < dMdY.getRowDimension(); ++i) {
  670.                 int jOrb = orbitsStartColumns[p];
  671.                 for (int j = 0; j < dMdY.getColumnDimension(); ++j) {
  672.                     final ParameterDriver driver = builders.get(p).getOrbitalParametersDrivers().getDrivers().get(j);
  673.                     if (driver.isSelected()) {
  674.                         measurementMatrix.setEntry(i, jOrb++,
  675.                                                    dMdY.getEntry(i, j) / sigma[i] * driver.getScale());
  676.                     }
  677.                 }
  678.             }

  679.             // Normalized measurement matrix's columns related to propagation parameters
  680.             // --------------------------------------------------------------

  681.             // Jacobian of the measurement with respect to propagation parameters
  682.             final int nbParams = estimatedPropagationParameters[p].getNbParams();
  683.             if (nbParams > 0) {
  684.                 final double[][] aYPp  = new double[6][nbParams];
  685.                 mappers[p].getParametersJacobian(evaluationStates[k], aYPp);
  686.                 final RealMatrix dYdPp = new Array2DRowRealMatrix(aYPp, false);
  687.                 final RealMatrix dMdPp = dMdY.multiply(dYdPp);
  688.                 for (int i = 0; i < dMdPp.getRowDimension(); ++i) {
  689.                     for (int j = 0; j < nbParams; ++j) {
  690.                         final ParameterDriver delegating = estimatedPropagationParameters[p].getDrivers().get(j);
  691.                         measurementMatrix.setEntry(i, propagationParameterColumns.get(delegating.getName()),
  692.                                                    dMdPp.getEntry(i, j) / sigma[i] * delegating.getScale());
  693.                     }
  694.                 }
  695.             }

  696.             // Normalized measurement matrix's columns related to measurement parameters
  697.             // --------------------------------------------------------------

  698.             // Jacobian of the measurement with respect to measurement parameters
  699.             // Gather the measurement parameters linked to current measurement
  700.             for (final ParameterDriver driver : observedMeasurement.getParametersDrivers()) {
  701.                 if (driver.isSelected()) {
  702.                     // Derivatives of current measurement w/r to selected measurement parameter
  703.                     final double[] aMPm = predictedMeasurement.getParameterDerivatives(driver);

  704.                     // Check that the measurement parameter is managed by the filter
  705.                     if (measurementParameterColumns.get(driver.getName()) != null) {
  706.                         // Column of the driver in the measurement matrix
  707.                         final int driverColumn = measurementParameterColumns.get(driver.getName());

  708.                         // Fill the corresponding indexes of the measurement matrix
  709.                         for (int i = 0; i < aMPm.length; ++i) {
  710.                             measurementMatrix.setEntry(i, driverColumn,
  711.                                                        aMPm[i] / sigma[i] * driver.getScale());
  712.                         }
  713.                     }
  714.                 }
  715.             }
  716.         }

  717.         // Return the normalized measurement matrix
  718.         return measurementMatrix;

  719.     }

  720.     /** Normalize a covariance matrix.
  721.      * The covariance P is an mxm matrix where m = nbOrb + nbPropag + nbMeas
  722.      * For each element [i,j] of P the corresponding normalized value is:
  723.      * Pn[i,j] = P[i,j] / (scale[i]*scale[j])
  724.      * @param physicalCovarianceMatrix The "physical" covariance matrix in input
  725.      * @return the normalized covariance matrix
  726.      */
  727.     private RealMatrix normalizeCovarianceMatrix(final RealMatrix physicalCovarianceMatrix) {

  728.         // Initialize output matrix
  729.         final int nbParams = physicalCovarianceMatrix.getRowDimension();
  730.         final RealMatrix normalizedCovarianceMatrix = MatrixUtils.createRealMatrix(nbParams, nbParams);

  731.         // Normalize the state matrix
  732.         for (int i = 0; i < nbParams; ++i) {
  733.             for (int j = 0; j < nbParams; ++j) {
  734.                 normalizedCovarianceMatrix.setEntry(i, j,
  735.                                                     physicalCovarianceMatrix.getEntry(i, j) /
  736.                                                     (scale[i] * scale[j]));
  737.             }
  738.         }
  739.         return normalizedCovarianceMatrix;
  740.     }

  741.     /** Set and apply a dynamic outlier filter on a measurement.<p>
  742.      * Loop on the modifiers to see if a dynamic outlier filter needs to be applied.<p>
  743.      * Compute the sigma array using the matrix in input and set the filter.<p>
  744.      * Apply the filter by calling the modify method on the estimated measurement.<p>
  745.      * Reset the filter.
  746.      * @param measurement measurement to filter
  747.      * @param innovationCovarianceMatrix So called innovation covariance matrix S, with:<p>
  748.      *        S = H.Ppred.Ht + R<p>
  749.      *        Where:<p>
  750.      *         - H is the normalized measurement matrix (Ht its transpose)<p>
  751.      *         - Ppred is the normalized predicted covariance matrix<p>
  752.      *         - R is the normalized measurement noise matrix
  753.      * @param <T> the type of measurement
  754.      */
  755.     private <T extends ObservedMeasurement<T>> void applyDynamicOutlierFilter(final EstimatedMeasurement<T> measurement,
  756.                                                                               final RealMatrix innovationCovarianceMatrix) {

  757.         // Observed measurement associated to the predicted measurement
  758.         final ObservedMeasurement<T> observedMeasurement = measurement.getObservedMeasurement();

  759.         // Check if a dynamic filter was added to the measurement
  760.         // If so, update its sigma value and apply it
  761.         for (EstimationModifier<T> modifier : observedMeasurement.getModifiers()) {
  762.             if (modifier instanceof DynamicOutlierFilter<?>) {
  763.                 final DynamicOutlierFilter<T> dynamicOutlierFilter = (DynamicOutlierFilter<T>) modifier;

  764.                 // Initialize the values of the sigma array used in the dynamic filter
  765.                 final double[] sigmaDynamic     = new double[innovationCovarianceMatrix.getColumnDimension()];
  766.                 final double[] sigmaMeasurement = observedMeasurement.getTheoreticalStandardDeviation();

  767.                 // Set the sigma value for each element of the measurement
  768.                 // Here we do use the value suggested by David A. Vallado (see [1]§10.6):
  769.                 // sigmaDynamic[i] = sqrt(diag(S))*sigma[i]
  770.                 // With S = H.Ppred.Ht + R
  771.                 // Where:
  772.                 //  - S is the measurement error matrix in input
  773.                 //  - H is the normalized measurement matrix (Ht its transpose)
  774.                 //  - Ppred is the normalized predicted covariance matrix
  775.                 //  - R is the normalized measurement noise matrix
  776.                 //  - sigma[i] is the theoretical standard deviation of the ith component of the measurement.
  777.                 //    It is used here to un-normalize the value before it is filtered
  778.                 for (int i = 0; i < sigmaDynamic.length; i++) {
  779.                     sigmaDynamic[i] = FastMath.sqrt(innovationCovarianceMatrix.getEntry(i, i)) * sigmaMeasurement[i];
  780.                 }
  781.                 dynamicOutlierFilter.setSigma(sigmaDynamic);

  782.                 // Apply the modifier on the estimated measurement
  783.                 modifier.modify(measurement);

  784.                 // Re-initialize the value of the filter for the next measurement of the same type
  785.                 dynamicOutlierFilter.setSigma(null);
  786.             }
  787.         }
  788.     }

  789.     /** {@inheritDoc} */
  790.     @Override
  791.     public NonLinearEvolution getEvolution(final double previousTime, final RealVector previousState,
  792.                                            final MeasurementDecorator measurement) {

  793.         // Set a reference date for all measurements parameters that lack one (including the not estimated ones)
  794.         final ObservedMeasurement<?> observedMeasurement = measurement.getObservedMeasurement();
  795.         for (final ParameterDriver driver : observedMeasurement.getParametersDrivers()) {
  796.             if (driver.getReferenceDate() == null) {
  797.                 driver.setReferenceDate(builders.get(0).getInitialOrbitDate());
  798.             }
  799.         }

  800.         ++currentMeasurementNumber;
  801.         currentDate = measurement.getObservedMeasurement().getDate();

  802.         // Note:
  803.         // - n = size of the current measurement
  804.         //  Example:
  805.         //   * 1 for Range, RangeRate and TurnAroundRange
  806.         //   * 2 for Angular (Azimuth/Elevation or Right-ascension/Declination)
  807.         //   * 6 for Position/Velocity
  808.         // - m = size of the state vector. n = nbOrb + nbPropag + nbMeas

  809.         // Predict the state vector (mx1)
  810.         final RealVector predictedState = predictState(observedMeasurement.getDate());

  811.         // Get the error state transition matrix (mxm)
  812.         final RealMatrix stateTransitionMatrix = getErrorStateTransitionMatrix();

  813.         // Predict the measurement based on predicted spacecraft state
  814.         // Compute the innovations (i.e. residuals of the predicted measurement)
  815.         // ------------------------------------------------------------

  816.         // Predicted measurement
  817.         // Note: here the "iteration/evaluation" formalism from the batch LS method
  818.         // is twisted to fit the need of the Kalman filter.
  819.         // The number of "iterations" is actually the number of measurements processed by the filter
  820.         // so far. We use this to be able to apply the OutlierFilter modifiers on the predicted measurement.
  821.         predictedMeasurement = observedMeasurement.estimate(currentMeasurementNumber,
  822.                                                             currentMeasurementNumber,
  823.                                                             filterRelevant(observedMeasurement, predictedSpacecraftStates));

  824.         // Normalized measurement matrix (nxm)
  825.         final RealMatrix measurementMatrix = getMeasurementMatrix();

  826.         // compute process noise matrix
  827.         final RealMatrix physicalProcessNoise = MatrixUtils.createRealMatrix(previousState.getDimension(),
  828.                                                                              previousState.getDimension());
  829.         for (int k = 0; k < covarianceMatricesProviders.size(); ++k) {

  830.             // Number of estimated measurement parameters
  831.             final int nbMeas = estimatedMeasurementsParameters.getNbParams();

  832.             // Number of estimated dynamic parameters (orbital + propagation)
  833.             final int nbDyn  = orbitsEndColumns[k] - orbitsStartColumns[k] +
  834.                                estimatedPropagationParameters[k].getNbParams();

  835.             // Covariance matrix
  836.             final RealMatrix noiseK = MatrixUtils.createRealMatrix(nbDyn + nbMeas, nbDyn + nbMeas);
  837.             final RealMatrix noiseP = covarianceMatricesProviders.get(k).
  838.                                       getProcessNoiseMatrix(correctedSpacecraftStates[k],
  839.                                                             predictedSpacecraftStates[k]);
  840.             noiseK.setSubMatrix(noiseP.getData(), 0, 0);
  841.             if (measurementProcessNoiseMatrix != null) {
  842.                 final RealMatrix noiseM = measurementProcessNoiseMatrix.
  843.                                           getProcessNoiseMatrix(correctedSpacecraftStates[k],
  844.                                                                 predictedSpacecraftStates[k]);
  845.                 noiseK.setSubMatrix(noiseM.getData(), nbDyn, nbDyn);
  846.             }

  847.             checkDimension(noiseK.getRowDimension(),
  848.                            builders.get(k).getOrbitalParametersDrivers(),
  849.                            builders.get(k).getPropagationParametersDrivers(),
  850.                            estimatedMeasurementsParameters);

  851.             final int[] indK = covarianceIndirection[k];
  852.             for (int i = 0; i < indK.length; ++i) {
  853.                 if (indK[i] >= 0) {
  854.                     for (int j = 0; j < indK.length; ++j) {
  855.                         if (indK[j] >= 0) {
  856.                             physicalProcessNoise.setEntry(indK[i], indK[j], noiseK.getEntry(i, j));
  857.                         }
  858.                     }
  859.                 }
  860.             }

  861.         }
  862.         final RealMatrix normalizedProcessNoise = normalizeCovarianceMatrix(physicalProcessNoise);

  863.         return new NonLinearEvolution(measurement.getTime(), predictedState,
  864.                                       stateTransitionMatrix, normalizedProcessNoise, measurementMatrix);

  865.     }


  866.     /** {@inheritDoc} */
  867.     @Override
  868.     public RealVector getInnovation(final MeasurementDecorator measurement, final NonLinearEvolution evolution,
  869.                                     final RealMatrix innovationCovarianceMatrix) {

  870.         // Apply the dynamic outlier filter, if it exists
  871.         applyDynamicOutlierFilter(predictedMeasurement, innovationCovarianceMatrix);
  872.         if (predictedMeasurement.getStatus() == EstimatedMeasurement.Status.REJECTED)  {
  873.             // set innovation to null to notify filter measurement is rejected
  874.             return null;
  875.         } else {
  876.             // Normalized innovation of the measurement (Nx1)
  877.             final double[] observed  = predictedMeasurement.getObservedMeasurement().getObservedValue();
  878.             final double[] estimated = predictedMeasurement.getEstimatedValue();
  879.             final double[] sigma     = predictedMeasurement.getObservedMeasurement().getTheoreticalStandardDeviation();
  880.             final double[] residuals = new double[observed.length];

  881.             for (int i = 0; i < observed.length; i++) {
  882.                 residuals[i] = (observed[i] - estimated[i]) / sigma[i];
  883.             }
  884.             return MatrixUtils.createRealVector(residuals);
  885.         }
  886.     }

  887.     /** Finalize estimation.
  888.      * @param observedMeasurement measurement that has just been processed
  889.      * @param estimate corrected estimate
  890.      */
  891.     public void finalizeEstimation(final ObservedMeasurement<?> observedMeasurement,
  892.                                    final ProcessEstimate estimate) {
  893.         // Update the parameters with the estimated state
  894.         // The min/max values of the parameters are handled by the ParameterDriver implementation
  895.         correctedEstimate = estimate;
  896.         updateParameters();

  897.         // Get the estimated propagator (mirroring parameter update in the builder)
  898.         // and the estimated spacecraft state
  899.         final Propagator[] estimatedPropagators = getEstimatedPropagators();
  900.         for (int k = 0; k < estimatedPropagators.length; ++k) {
  901.             correctedSpacecraftStates[k] = estimatedPropagators[k].getInitialState();
  902.         }

  903.         // Compute the estimated measurement using estimated spacecraft state
  904.         correctedMeasurement = observedMeasurement.estimate(currentMeasurementNumber,
  905.                                                             currentMeasurementNumber,
  906.                                                             filterRelevant(observedMeasurement, correctedSpacecraftStates));
  907.         // Update the trajectory
  908.         // ---------------------
  909.         updateReferenceTrajectories(estimatedPropagators, propagationType, stateType);

  910.     }

  911.     /** Filter relevant states for a measurement.
  912.      * @param observedMeasurement measurement to consider
  913.      * @param allStates all states
  914.      * @return array containing only the states relevant to the measurement
  915.      * @since 10.1
  916.      */
  917.     private SpacecraftState[] filterRelevant(final ObservedMeasurement<?> observedMeasurement, final SpacecraftState[] allStates) {
  918.         final List<ObservableSatellite> satellites = observedMeasurement.getSatellites();
  919.         final SpacecraftState[] relevantStates = new SpacecraftState[satellites.size()];
  920.         for (int i = 0; i < relevantStates.length; ++i) {
  921.             relevantStates[i] = allStates[satellites.get(i).getPropagatorIndex()];
  922.         }
  923.         return relevantStates;
  924.     }

  925.     /** Set the predicted normalized state vector.
  926.      * The predicted/propagated orbit is used to update the state vector
  927.      * @param date prediction date
  928.      * @return predicted state
  929.      */
  930.     private RealVector predictState(final AbsoluteDate date) {

  931.         // Predicted state is initialized to previous estimated state
  932.         final RealVector predictedState = correctedEstimate.getState().copy();

  933.         // Orbital parameters counter
  934.         int jOrb = 0;

  935.         for (int k = 0; k < predictedSpacecraftStates.length; ++k) {

  936.             // Propagate the reference trajectory to measurement date
  937.             predictedSpacecraftStates[k] = referenceTrajectories[k].propagate(date);

  938.             // Update the builder with the predicted orbit
  939.             // This updates the orbital drivers with the values of the predicted orbit
  940.             builders.get(k).resetOrbit(predictedSpacecraftStates[k].getOrbit());

  941.             // The orbital parameters in the state vector are replaced with their predicted values
  942.             // The propagation & measurement parameters are not changed by the prediction (i.e. the propagation)
  943.             // As the propagator builder was previously updated with the predicted orbit,
  944.             // the selected orbital drivers are already up to date with the prediction
  945.             for (DelegatingDriver orbitalDriver : builders.get(k).getOrbitalParametersDrivers().getDrivers()) {
  946.                 if (orbitalDriver.isSelected()) {
  947.                     predictedState.setEntry(jOrb++, orbitalDriver.getNormalizedValue());
  948.                 }
  949.             }

  950.         }

  951.         return predictedState;

  952.     }

  953.     /** Update the estimated parameters after the correction phase of the filter.
  954.      * The min/max allowed values are handled by the parameter themselves.
  955.      */
  956.     private void updateParameters() {
  957.         final RealVector correctedState = correctedEstimate.getState();
  958.         int i = 0;
  959.         for (final DelegatingDriver driver : getEstimatedOrbitalParameters().getDrivers()) {
  960.             // let the parameter handle min/max clipping
  961.             driver.setNormalizedValue(correctedState.getEntry(i));
  962.             correctedState.setEntry(i++, driver.getNormalizedValue());
  963.         }
  964.         for (final DelegatingDriver driver : getEstimatedPropagationParameters().getDrivers()) {
  965.             // let the parameter handle min/max clipping
  966.             driver.setNormalizedValue(correctedState.getEntry(i));
  967.             correctedState.setEntry(i++, driver.getNormalizedValue());
  968.         }
  969.         for (final DelegatingDriver driver : getEstimatedMeasurementsParameters().getDrivers()) {
  970.             // let the parameter handle min/max clipping
  971.             driver.setNormalizedValue(correctedState.getEntry(i));
  972.             correctedState.setEntry(i++, driver.getNormalizedValue());
  973.         }
  974.     }

  975.     /** Getter for the propagators.
  976.      * @return the propagators
  977.      */
  978.     public List<OrbitDeterminationPropagatorBuilder> getBuilders() {
  979.         return builders;
  980.     }

  981.     /** Getter for the reference trajectories.
  982.      * @return the referencetrajectories
  983.      */
  984.     public Propagator[] getReferenceTrajectories() {
  985.         return referenceTrajectories.clone();
  986.     }

  987.     /** Setter for the reference trajectories.
  988.      * @param referenceTrajectories the reference trajectories to be setted
  989.      */
  990.     public void setReferenceTrajectories(final Propagator[] referenceTrajectories) {
  991.         this.referenceTrajectories = referenceTrajectories.clone();
  992.     }

  993.     /** Getter for the jacobian mappers.
  994.      * @return the jacobian mappers
  995.      */
  996.     public AbstractJacobiansMapper[] getMappers() {
  997.         return mappers.clone();
  998.     }

  999.     /** Setter for the jacobian mappers.
  1000.      * @param mappers the jacobian mappers to set
  1001.      */
  1002.     public void setMappers(final AbstractJacobiansMapper[] mappers) {
  1003.         this.mappers = mappers.clone();
  1004.     }

  1005.     /** Get the propagators estimated with the values set in the propagators builders.
  1006.      * @return propagators based on the current values in the builder
  1007.      */
  1008.     public Propagator[] getEstimatedPropagators() {
  1009.         // Return propagators built with current instantiation of the propagator builders
  1010.         final Propagator[] propagators = new Propagator[getBuilders().size()];
  1011.         for (int k = 0; k < getBuilders().size(); ++k) {
  1012.             propagators[k] = getBuilders().get(k).buildPropagator(getBuilders().get(k).getSelectedNormalizedParameters());
  1013.         }
  1014.         return propagators;
  1015.     }

  1016. }