LOFType.java
- /* Copyright 2002-2022 CS GROUP
- * Licensed to CS GROUP (CS) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * CS licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.orekit.frames;
- import org.hipparchus.Field;
- import org.hipparchus.CalculusFieldElement;
- import org.hipparchus.geometry.euclidean.threed.FieldRotation;
- import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
- import org.hipparchus.geometry.euclidean.threed.Rotation;
- import org.hipparchus.geometry.euclidean.threed.Vector3D;
- import org.orekit.time.AbsoluteDate;
- import org.orekit.time.FieldAbsoluteDate;
- import org.orekit.utils.FieldPVCoordinates;
- import org.orekit.utils.PVCoordinates;
- /** Enumerate for different types of Local Orbital Frames.
- * @author Luc Maisonobe
- */
- public enum LOFType {
- /** Constant for TNW frame
- * (X axis aligned with velocity, Z axis aligned with orbital momentum).
- * <p>
- * The axes of this frame are parallel to the axes of the {@link #VNC}
- * and {@link #NTW} frames:
- * <ul>
- * <li>X<sub>TNW</sub> = X<sub>VNC</sub> = Y<sub>NTW</sub></li>
- * <li>Y<sub>TNW</sub> = -Z<sub>VNC</sub> = -X<sub>NTW</sub></li>
- * <li>Z<sub>TNW</sub> = Y<sub>VNC</sub> = Z<sub>NTW</sub></li>
- * </ul>
- *
- * @see #VNC
- * @see #NTW
- */
- TNW {
- /** {@inheritDoc} */
- public Rotation rotationFromInertial(final PVCoordinates pv) {
- return new Rotation(pv.getVelocity(), pv.getMomentum(),
- Vector3D.PLUS_I, Vector3D.PLUS_K);
- }
- /** {@inheritDoc} */
- public <T extends CalculusFieldElement<T>> FieldRotation<T> rotationFromInertial(final Field<T> field,
- final FieldPVCoordinates<T> pv) {
- return new FieldRotation<>(pv.getVelocity(), pv.getMomentum(),
- new FieldVector3D<>(field, Vector3D.PLUS_I),
- new FieldVector3D<>(field, Vector3D.PLUS_K));
- }
- },
- /** Constant for QSW frame
- * (X axis aligned with position, Z axis aligned with orbital momentum).
- * <p>
- * This frame is also known as the {@link #LVLH} frame, both constants are equivalent.
- * </p>
- * <p>
- * The axes of these frames are parallel to the axes of the {@link #VVLH} frame:
- * <ul>
- * <li>X<sub>QSW/LVLH</sub> = -Z<sub>VVLH</sub></li>
- * <li>Y<sub>QSW/LVLH</sub> = X<sub>VVLH</sub></li>
- * <li>Z<sub>QSW/LVLH</sub> = -Y<sub>VVLH</sub></li>
- * </ul>
- *
- * @see #LVLH
- * @see #VVLH
- */
- QSW {
- /** {@inheritDoc} */
- public Rotation rotationFromInertial(final PVCoordinates pv) {
- return new Rotation(pv.getPosition(), pv.getMomentum(),
- Vector3D.PLUS_I, Vector3D.PLUS_K);
- }
- /** {@inheritDoc} */
- public <T extends CalculusFieldElement<T>> FieldRotation<T> rotationFromInertial(final Field<T> field,
- final FieldPVCoordinates<T> pv) {
- return new FieldRotation<>(pv.getPosition(), pv.getMomentum(),
- new FieldVector3D<>(field, Vector3D.PLUS_I),
- new FieldVector3D<>(field, Vector3D.PLUS_K));
- }
- },
- /** Constant for Local Vertical, Local Horizontal frame
- * (X axis aligned with position, Z axis aligned with orbital momentum).
- * <p>
- * BEWARE! Depending on the background (software used, textbook, community),
- * different incompatible definitions for LVLH are used. This one is consistent
- * with Vallado's book and with AGI's STK. However CCSDS standard, Wertz, and
- * a.i. solutions' FreeFlyer use another definition (see {@link #LVLH_CCSDS}).
- * </p>
- * <p>
- * This frame is also known as the {@link #QSW} frame, both constants are equivalent.
- * </p>
- * <p>
- * The axes of these frames are parallel to the axes of the {@link #LVLH_CCSDS} frame:
- * <ul>
- * <li>X<sub>LVLH/QSW</sub> = -Z<sub>LVLH_CCSDS</sub></li>
- * <li>Y<sub>LVLH/QSW</sub> = X<sub>LVLH_CCSDS</sub></li>
- * <li>Z<sub>LVLH/QSW</sub> = -Y<sub>LVLH_CCSDS</sub></li>
- * </ul>
- *
- * @see #QSW
- * @see #VVLH
- */
- LVLH {
- /** {@inheritDoc} */
- public Rotation rotationFromInertial(final PVCoordinates pv) {
- return new Rotation(pv.getPosition(), pv.getMomentum(),
- Vector3D.PLUS_I, Vector3D.PLUS_K);
- }
- /** {@inheritDoc} */
- public <T extends CalculusFieldElement<T>> FieldRotation<T> rotationFromInertial(final Field<T> field,
- final FieldPVCoordinates<T> pv) {
- return new FieldRotation<>(pv.getPosition(), pv.getMomentum(),
- new FieldVector3D<>(field, Vector3D.PLUS_I),
- new FieldVector3D<>(field, Vector3D.PLUS_K));
- }
- },
- /** Constant for Local Vertical, Local Horizontal frame as defined by CCSDS
- * (Z axis aligned with opposite of position, Y axis aligned with opposite of orbital momentum).
- * <p>
- * BEWARE! Depending on the background (software used, textbook, community),
- * different incompatible definitions for LVLH are used. This one is consistent
- * with CCSDS standard, Wertz, and a.i. solutions' FreeFlyer. However Vallado's
- * book and with AGI's STK use another definition (see {@link #LVLH}).
- * </p>
- * <p>
- * The axes of this frame are parallel to the axes of both the {@link #QSW} and {@link #LVLH} frames:
- * <ul>
- * <li>X<sub>LVLH_CCSDS/VVLH</sub> = Y<sub>QSW/LVLH</sub></li>
- * <li>Y<sub>LVLH_CCSDS/VVLH</sub> = -Z<sub>QSW/LVLH</sub></li>
- * <li>Z<sub>LVLH_CCSDS/VVLH</sub> = -X<sub>QSW/LVLH</sub></li>
- * </ul>
- *
- * @see #QSW
- * @see #LVLH
- * @since 11.0
- */
- LVLH_CCSDS {
- /** {@inheritDoc} */
- public Rotation rotationFromInertial(final PVCoordinates pv) {
- return new Rotation(pv.getPosition(), pv.getMomentum(),
- Vector3D.MINUS_K, Vector3D.MINUS_J);
- }
- /** {@inheritDoc} */
- public <T extends CalculusFieldElement<T>> FieldRotation<T> rotationFromInertial(final Field<T> field,
- final FieldPVCoordinates<T> pv) {
- return new FieldRotation<>(pv.getPosition(), pv.getMomentum(),
- new FieldVector3D<>(field, Vector3D.MINUS_K),
- new FieldVector3D<>(field, Vector3D.MINUS_J));
- }
- },
- /** Constant for Vehicle Velocity, Local Horizontal frame
- * (Z axis aligned with opposite of position, Y axis aligned with opposite of orbital momentum).
- * <p>
- * This is another name for {@link #LVLH_CCSDS}, kept here for compatibility with STK.
- * </p>
- * <p>
- * Beware that the name is misleading: in the general case (i.e. not perfectly circular),
- * none of the axes is perfectly aligned with velocity! The preferred name for this
- * should be {@link #LVLH_CCSDS}.
- * </p>
- * <p>
- * The axes of this frame are parallel to the axes of both the {@link #QSW} and {@link #LVLH} frames:
- * <ul>
- * <li>X<sub>LVLH_CCSDS/VVLH</sub> = Y<sub>QSW/LVLH</sub></li>
- * <li>Y<sub>LVLH_CCSDS/VVLH</sub> = -Z<sub>QSW/LVLH</sub></li>
- * <li>Z<sub>LVLH_CCSDS/VVLH</sub> = -X<sub>QSW/LVLH</sub></li>
- * </ul>
- * @see #LVLH_CCSDS
- */
- VVLH {
- /** {@inheritDoc} */
- public Rotation rotationFromInertial(final PVCoordinates pv) {
- return LVLH_CCSDS.rotationFromInertial(pv);
- }
- /** {@inheritDoc} */
- public <T extends CalculusFieldElement<T>> FieldRotation<T> rotationFromInertial(final Field<T> field,
- final FieldPVCoordinates<T> pv) {
- return LVLH_CCSDS.rotationFromInertial(field, pv);
- }
- },
- /** Constant for Velocity - Normal - Co-normal frame
- * (X axis aligned with velocity, Y axis aligned with orbital momentum).
- * <p>
- * The axes of this frame are parallel to the axes of the {@link #TNW}
- * and {@link #NTW} frames:
- * <ul>
- * <li>X<sub>VNC</sub> = X<sub>TNW</sub> = Y<sub>NTW</sub></li>
- * <li>Y<sub>VNC</sub> = Z<sub>TNW</sub> = Z<sub>NTW</sub></li>
- * <li>Z<sub>VNC</sub> = -Y<sub>TNW</sub> = X<sub>NTW</sub></li>
- * </ul>
- *
- * @see #TNW
- * @see #NTW
- */
- VNC {
- /** {@inheritDoc} */
- public Rotation rotationFromInertial(final PVCoordinates pv) {
- return new Rotation(pv.getVelocity(), pv.getMomentum(),
- Vector3D.PLUS_I, Vector3D.PLUS_J);
- }
- @Override
- public <T extends CalculusFieldElement<T>> FieldRotation<T> rotationFromInertial(final Field<T> field,
- final FieldPVCoordinates<T> pv) {
- return new FieldRotation<>(pv.getVelocity(), pv.getMomentum(),
- new FieldVector3D<>(field, Vector3D.PLUS_I),
- new FieldVector3D<>(field, Vector3D.PLUS_J));
- }
- },
- /** Constant for Equinoctial Coordinate System
- * (X axis aligned with ascending node, Z axis aligned with orbital momentum).
- * @since 11.0
- */
- EQW {
- /** {@inheritDoc} */
- public Rotation rotationFromInertial(final PVCoordinates pv) {
- final Vector3D m = pv.getMomentum();
- return new Rotation(new Vector3D(-m.getY(), m.getX(), 0), m,
- Vector3D.PLUS_I, Vector3D.PLUS_J);
- }
- @Override
- public <T extends CalculusFieldElement<T>> FieldRotation<T> rotationFromInertial(final Field<T> field,
- final FieldPVCoordinates<T> pv) {
- final FieldVector3D<T> m = pv.getMomentum();
- return new FieldRotation<>(new FieldVector3D<>(m.getY().negate(), m.getX(), field.getZero()),
- m,
- new FieldVector3D<>(field, Vector3D.PLUS_I),
- new FieldVector3D<>(field, Vector3D.PLUS_J));
- }
- },
- /** Constant for Transverse Velocity Normal coordinate system
- * (Y axis aligned with velocity, Z axis aligned with orbital momentum).
- * <p>
- * The axes of this frame are parallel to the axes of the {@link #TNW}
- * and {@link #VNC} frames:
- * <ul>
- * <li>X<sub>NTW</sub> = -Y<sub>TNW</sub> = Z<sub>VNC</sub></li>
- * <li>Y<sub>NTW</sub> = X<sub>TNW</sub> = X<sub>VNC</sub></li>
- * <li>Z<sub>NTW</sub> = Z<sub>TNW</sub> = Y<sub>VNC</sub></li>
- * </ul>
- * @see #TNW
- * @see #VNC
- * @since 11.0
- */
- NTW {
- /** {@inheritDoc} */
- public Rotation rotationFromInertial(final PVCoordinates pv) {
- final Vector3D m = pv.getMomentum();
- return new Rotation(new Vector3D(-m.getY(), m.getX(), 0), m,
- Vector3D.PLUS_I, Vector3D.PLUS_J);
- }
- @Override
- public <T extends CalculusFieldElement<T>> FieldRotation<T> rotationFromInertial(final Field<T> field,
- final FieldPVCoordinates<T> pv) {
- final FieldVector3D<T> m = pv.getMomentum();
- return new FieldRotation<>(new FieldVector3D<>(m.getY().negate(), m.getX(), field.getZero()),
- m,
- new FieldVector3D<>(field, Vector3D.PLUS_I),
- new FieldVector3D<>(field, Vector3D.PLUS_J));
- }
- };
- /** Get the transform from an inertial frame defining position-velocity and the local orbital frame.
- * @param date current date
- * @param pv position-velocity of the spacecraft in some inertial frame
- * @return transform from the frame where position-velocity are defined to local orbital frame
- */
- public Transform transformFromInertial(final AbsoluteDate date, final PVCoordinates pv) {
- // compute the translation part of the transform
- final Transform translation = new Transform(date, pv.negate());
- // compute the rotation part of the transform
- final Rotation r = rotationFromInertial(pv);
- final Vector3D p = pv.getPosition();
- final Vector3D momentum = pv.getMomentum();
- final Transform rotation =
- new Transform(date, r, new Vector3D(1.0 / p.getNormSq(), r.applyTo(momentum)));
- return new Transform(date, translation, rotation);
- }
- /** Get the transform from an inertial frame defining position-velocity and the local orbital frame.
- * @param date current date
- * @param pv position-velocity of the spacecraft in some inertial frame
- * @param <T> type of the fiels elements
- * @return transform from the frame where position-velocity are defined to local orbital frame
- * @since 9.0
- */
- public <T extends CalculusFieldElement<T>> FieldTransform<T> transformFromInertial(final FieldAbsoluteDate<T> date,
- final FieldPVCoordinates<T> pv) {
- // compute the translation part of the transform
- final FieldTransform<T> translation = new FieldTransform<>(date, pv.negate());
- // compute the rotation part of the transform
- final FieldRotation<T> r = rotationFromInertial(date.getField(), pv);
- final FieldVector3D<T> p = pv.getPosition();
- final FieldVector3D<T> momentum = pv.getMomentum();
- final FieldTransform<T> rotation =
- new FieldTransform<T>(date, r, new FieldVector3D<>(p.getNormSq().reciprocal(), r.applyTo(momentum)));
- return new FieldTransform<>(date, translation, rotation);
- }
- /** Get the rotation from inertial frame to local orbital frame.
- * <p>
- * This rotation does not include any time derivatives. If first
- * time derivatives (i.e. rotation rate) is needed as well, the full
- * {@link #transformFromInertial(AbsoluteDate, PVCoordinates) transformFromInertial}
- * method must be called and the complete rotation transform must be extracted
- * from it.
- * </p>
- * @param pv position-velocity of the spacecraft in some inertial frame
- * @return rotation from inertial frame to local orbital frame
- */
- public abstract Rotation rotationFromInertial(PVCoordinates pv);
- /** Get the rotation from inertial frame to local orbital frame.
- * <p>
- * This rotation does not include any time derivatives. If first
- * time derivatives (i.e. rotation rate) is needed as well, the full
- * {@link #transformFromInertial(FieldAbsoluteDate, FieldPVCoordinates) transformFromInertial}
- * method must be called and the complete rotation transform must be extracted
- * from it.
- * </p>
- * @param field field to which the elements belong
- * @param pv position-velocity of the spacecraft in some inertial frame
- * @param <T> type of the field elements
- * @return rotation from inertial frame to local orbital frame
- * @since 9.0
- */
- public abstract <T extends CalculusFieldElement<T>> FieldRotation<T> rotationFromInertial(Field<T> field,
- FieldPVCoordinates<T> pv);
- }