EskfMeasurementHandler.java
- /* Copyright 2002-2022 CS GROUP
- * Licensed to CS GROUP (CS) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * CS licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.orekit.estimation.sequential;
- import java.util.List;
- import org.hipparchus.exception.MathRuntimeException;
- import org.hipparchus.filtering.kalman.ProcessEstimate;
- import org.hipparchus.filtering.kalman.extended.ExtendedKalmanFilter;
- import org.hipparchus.linear.MatrixUtils;
- import org.hipparchus.linear.RealMatrix;
- import org.orekit.errors.OrekitException;
- import org.orekit.estimation.measurements.ObservedMeasurement;
- import org.orekit.estimation.measurements.PV;
- import org.orekit.estimation.measurements.Position;
- import org.orekit.propagation.SpacecraftState;
- import org.orekit.propagation.sampling.OrekitStepHandler;
- import org.orekit.propagation.sampling.OrekitStepInterpolator;
- import org.orekit.time.AbsoluteDate;
- /** {@link org.orekit.propagation.sampling.OrekitStepHandler Step handler} picking up
- * {@link ObservedMeasurement measurements} for the {@link SemiAnalyticalKalmanEstimator}.
- * @author Julie Bayard
- * @author Bryan Cazabonne
- * @author Maxime Journot
- * @since 11.1
- */
- public class EskfMeasurementHandler implements OrekitStepHandler {
- /** Least squares model. */
- private final SemiAnalyticalKalmanModel model;
- /** Extended Kalman Filter. */
- private final ExtendedKalmanFilter<MeasurementDecorator> filter;
- /** Underlying measurements. */
- private final List<ObservedMeasurement<?>> observedMeasurements;
- /** Index of the next measurement component in the model. */
- private int index;
- /** Reference date. */
- private AbsoluteDate referenceDate;
- /** Observer to retrieve current estimation info. */
- private KalmanObserver observer;
- /** Simple constructor.
- * @param model semi-analytical kalman model
- * @param filter kalman filter instance
- * @param observedMeasurements list of observed measurements
- * @param referenceDate reference date
- */
- public EskfMeasurementHandler(final SemiAnalyticalKalmanModel model,
- final ExtendedKalmanFilter<MeasurementDecorator> filter,
- final List<ObservedMeasurement<?>> observedMeasurements,
- final AbsoluteDate referenceDate) {
- this.model = model;
- this.filter = filter;
- this.observer = model.getObserver();
- this.observedMeasurements = observedMeasurements;
- this.referenceDate = referenceDate;
- }
- /** {@inheritDoc} */
- @Override
- public void init(final SpacecraftState s0, final AbsoluteDate t) {
- this.index = 0;
- // Initialize short periodic terms.
- model.initializeShortPeriodicTerms(s0);
- model.updateShortPeriods(s0);
- }
- /** {@inheritDoc} */
- @Override
- public void handleStep(final OrekitStepInterpolator interpolator) {
- // Current date
- final AbsoluteDate currentDate = interpolator.getCurrentState().getDate();
- // Update the short period terms with the current MEAN state
- model.updateShortPeriods(interpolator.getCurrentState());
- // Process the measurements between previous step and current step
- while (index < observedMeasurements.size() && observedMeasurements.get(index).getDate().compareTo(currentDate) < 0) {
- try {
- // Update the norminal state with the interpolated parameters
- model.updateNominalSpacecraftState(interpolator.getInterpolatedState(observedMeasurements.get(index).getDate()));
- // Process the current observation
- final ProcessEstimate estimate = filter.estimationStep(decorate(observedMeasurements.get(index)));
- // Finalize the estimation
- model.finalizeEstimation(observedMeasurements.get(index), estimate);
- // Call the observer if the user add one
- if (observer != null) {
- observer.evaluationPerformed(model);
- }
- } catch (MathRuntimeException mrte) {
- throw new OrekitException(mrte);
- }
- // Increment the measurement index
- index += 1;
- }
- // Reset the initial state of the propagator
- model.finalizeOperationsObservationGrid();
- }
- /** Decorate an observed measurement.
- * <p>
- * The "physical" measurement noise matrix is the covariance matrix of the measurement.
- * Normalizing it consists in applying the following equation: Rn[i,j] = R[i,j]/σ[i]/σ[j]
- * Thus the normalized measurement noise matrix is the matrix of the correlation coefficients
- * between the different components of the measurement.
- * </p>
- * @param observedMeasurement the measurement
- * @return decorated measurement
- */
- private MeasurementDecorator decorate(final ObservedMeasurement<?> observedMeasurement) {
- // Normalized measurement noise matrix contains 1 on its diagonal and correlation coefficients
- // of the measurement on its non-diagonal elements.
- // Indeed, the "physical" measurement noise matrix is the covariance matrix of the measurement
- // Normalizing it leaves us with the matrix of the correlation coefficients
- final RealMatrix covariance;
- if (observedMeasurement instanceof PV) {
- // For PV measurements we do have a covariance matrix and thus a correlation coefficients matrix
- final PV pv = (PV) observedMeasurement;
- covariance = MatrixUtils.createRealMatrix(pv.getCorrelationCoefficientsMatrix());
- } else if (observedMeasurement instanceof Position) {
- // For Position measurements we do have a covariance matrix and thus a correlation coefficients matrix
- final Position position = (Position) observedMeasurement;
- covariance = MatrixUtils.createRealMatrix(position.getCorrelationCoefficientsMatrix());
- } else {
- // For other measurements we do not have a covariance matrix.
- // Thus the correlation coefficients matrix is an identity matrix.
- covariance = MatrixUtils.createRealIdentityMatrix(observedMeasurement.getDimension());
- }
- return new MeasurementDecorator(observedMeasurement, covariance, referenceDate);
- }
- }