GLONASSAnalyticalPropagator.java

  1. /* Copyright 2002-2022 CS GROUP
  2.  * Licensed to CS GROUP (CS) under one or more
  3.  * contributor license agreements.  See the NOTICE file distributed with
  4.  * this work for additional information regarding copyright ownership.
  5.  * CS licenses this file to You under the Apache License, Version 2.0
  6.  * (the "License"); you may not use this file except in compliance with
  7.  * the License.  You may obtain a copy of the License at
  8.  *
  9.  *   http://www.apache.org/licenses/LICENSE-2.0
  10.  *
  11.  * Unless required by applicable law or agreed to in writing, software
  12.  * distributed under the License is distributed on an "AS IS" BASIS,
  13.  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  14.  * See the License for the specific language governing permissions and
  15.  * limitations under the License.
  16.  */
  17. package org.orekit.propagation.analytical.gnss;

  18. import org.hipparchus.analysis.differentiation.UnivariateDerivative2;
  19. import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
  20. import org.hipparchus.geometry.euclidean.threed.Vector3D;
  21. import org.hipparchus.util.FastMath;
  22. import org.hipparchus.util.FieldSinCos;
  23. import org.hipparchus.util.MathArrays;
  24. import org.hipparchus.util.MathUtils;
  25. import org.hipparchus.util.Precision;
  26. import org.orekit.attitudes.AttitudeProvider;
  27. import org.orekit.data.DataContext;
  28. import org.orekit.errors.OrekitException;
  29. import org.orekit.errors.OrekitMessages;
  30. import org.orekit.frames.Frame;
  31. import org.orekit.orbits.CartesianOrbit;
  32. import org.orekit.orbits.Orbit;
  33. import org.orekit.propagation.SpacecraftState;
  34. import org.orekit.propagation.analytical.AbstractAnalyticalPropagator;
  35. import org.orekit.propagation.analytical.gnss.data.GLONASSOrbitalElements;
  36. import org.orekit.propagation.analytical.gnss.data.GNSSConstants;
  37. import org.orekit.time.AbsoluteDate;
  38. import org.orekit.time.GLONASSDate;
  39. import org.orekit.time.TimeScale;
  40. import org.orekit.utils.PVCoordinates;

  41. /**
  42.  * This class aims at propagating a GLONASS orbit from {@link GLONASSOrbitalElements}.
  43.  *
  44.  * @see <a href="http://russianspacesystems.ru/wp-content/uploads/2016/08/ICD-GLONASS-CDMA-General.-Edition-1.0-2016.pdf">
  45.  *       GLONASS Interface Control Document</a>
  46.  *
  47.  * @author Bryan Cazabonne
  48.  * @since 10.0
  49.  *
  50.  */
  51. public class GLONASSAnalyticalPropagator extends AbstractAnalyticalPropagator {

  52.     // Constants
  53.     /** Constant 7.0 / 3.0. */
  54.     private static final double SEVEN_THIRD = 7.0 / 3.0;

  55.     /** Constant 7.0 / 6.0. */
  56.     private static final double SEVEN_SIXTH = 7.0 / 6.0;

  57.     /** Constant 7.0 / 24.0. */
  58.     private static final double SEVEN_24TH = 7.0 / 24.0;

  59.     /** Constant 49.0 / 72.0. */
  60.     private static final double FN_72TH = 49.0 / 72.0;

  61.     /** Value of the earth's rotation rate in rad/s. */
  62.     private static final double GLONASS_AV = 7.2921150e-5;

  63.     /** Mean value of inclination for Glonass orbit is equal to 63°. */
  64.     private static final double GLONASS_MEAN_INCLINATION = 64.8;

  65.     /** Mean value of Draconian period for Glonass orbit is equal to 40544s : 11 hours 15 minutes 44 seconds. */
  66.     private static final double GLONASS_MEAN_DRACONIAN_PERIOD = 40544;

  67.     /** Second degree zonal coefficient of normal potential. */
  68.     private static final double GLONASS_J20 = 1.08262575e-3;

  69.     /** Equatorial radius of Earth (m). */
  70.     private static final double GLONASS_EARTH_EQUATORIAL_RADIUS = 6378136;

  71.     // Data used to solve Kepler's equation
  72.     /** First coefficient to compute Kepler equation solver starter. */
  73.     private static final double A;

  74.     /** Second coefficient to compute Kepler equation solver starter. */
  75.     private static final double B;

  76.     static {
  77.         final double k1 = 3 * FastMath.PI + 2;
  78.         final double k2 = FastMath.PI - 1;
  79.         final double k3 = 6 * FastMath.PI - 1;
  80.         A  = 3 * k2 * k2 / k1;
  81.         B  = k3 * k3 / (6 * k1);
  82.     }

  83.     /** The GLONASS orbital elements used. */
  84.     private final GLONASSOrbitalElements glonassOrbit;

  85.     /** The spacecraft mass (kg). */
  86.     private final double mass;

  87.     /** The ECI frame used for GLONASS propagation. */
  88.     private final Frame eci;

  89.     /** The ECEF frame used for GLONASS propagation. */
  90.     private final Frame ecef;

  91.     /** Data context for propagation. */
  92.     private final DataContext dataContext;

  93.     /**
  94.      * Private constructor.
  95.      * @param glonassOrbit Glonass orbital elements
  96.      * @param eci Earth Centered Inertial frame
  97.      * @param ecef Earth Centered Earth Fixed frame
  98.      * @param provider Attitude provider
  99.      * @param mass Satellite mass (kg)
  100.      * @param context Data context
  101.      */
  102.     GLONASSAnalyticalPropagator(final GLONASSOrbitalElements glonassOrbit, final Frame eci,
  103.                                 final Frame ecef, final AttitudeProvider provider,
  104.                                 final double mass, final DataContext context) {
  105.         super(provider);
  106.         this.dataContext = context;
  107.         // Stores the GLONASS orbital elements
  108.         this.glonassOrbit = glonassOrbit;
  109.         // Sets the start date as the date of the orbital elements
  110.         setStartDate(glonassOrbit.getDate());
  111.         // Sets the mass
  112.         this.mass = mass;
  113.         // Sets the Earth Centered Inertial frame
  114.         this.eci  = eci;
  115.         // Sets the Earth Centered Earth Fixed frame
  116.         this.ecef = ecef;
  117.     }

  118.     /**
  119.      * Gets the PVCoordinates of the GLONASS SV in {@link #getECEF() ECEF frame}.
  120.      *
  121.      * <p>The algorithm is defined at Appendix M.1 from GLONASS Interface Control Document,
  122.      * with automatic differentiation added to compute velocity and
  123.      * acceleration.</p>
  124.      *
  125.      * @param date the computation date
  126.      * @return the GLONASS SV PVCoordinates in {@link #getECEF() ECEF frame}
  127.      */
  128.     public PVCoordinates propagateInEcef(final AbsoluteDate date) {

  129.         // Interval of prediction dTpr
  130.         final UnivariateDerivative2 dTpr = getdTpr(date);

  131.         // Zero
  132.         final UnivariateDerivative2 zero = dTpr.getField().getZero();

  133.         // The number of whole orbits "w" on a prediction interval
  134.         final UnivariateDerivative2 w = FastMath.floor(dTpr.divide(GLONASS_MEAN_DRACONIAN_PERIOD + glonassOrbit.getDeltaT()));

  135.         // Current inclination
  136.         final UnivariateDerivative2 i = zero.add(GLONASS_MEAN_INCLINATION / 180 * GNSSConstants.GLONASS_PI + glonassOrbit.getDeltaI());

  137.         // Eccentricity
  138.         final UnivariateDerivative2 e = zero.add(glonassOrbit.getE());

  139.         // Mean draconique period in orbite w+1 and mean motion
  140.         final UnivariateDerivative2 tDR = w.multiply(2.0).add(1.0).multiply(glonassOrbit.getDeltaTDot()).
  141.                                           add(glonassOrbit.getDeltaT()).
  142.                                           add(GLONASS_MEAN_DRACONIAN_PERIOD);
  143.         final UnivariateDerivative2 n = tDR.divide(2.0 * GNSSConstants.GLONASS_PI).reciprocal();

  144.         // Semi-major axis : computed by successive approximation
  145.         final UnivariateDerivative2 sma = computeSma(tDR, i, e);

  146.         // (ae / p)^2 term
  147.         final UnivariateDerivative2 p     = sma.multiply(e.multiply(e).negate().add(1.0));
  148.         final UnivariateDerivative2 aeop  = p.divide(GLONASS_EARTH_EQUATORIAL_RADIUS).reciprocal();
  149.         final UnivariateDerivative2 aeop2 = aeop.multiply(aeop);

  150.         // Current longitude of the ascending node
  151.         final UnivariateDerivative2 lambda = computeLambda(dTpr, n, aeop2, i);

  152.         // Current argument of perigee
  153.         final UnivariateDerivative2 pa = computePA(dTpr, n, aeop2, i);

  154.         // Mean longitude at the instant the spacecraft passes the current ascending node
  155.         final UnivariateDerivative2 tanPAo2 = FastMath.tan(pa.divide(2.0));
  156.         final UnivariateDerivative2 coef    = tanPAo2.multiply(FastMath.sqrt(e.negate().add(1.0).divide(e.add(1.0))));
  157.         final UnivariateDerivative2 e0      = FastMath.atan(coef).multiply(2.0).negate();
  158.         final UnivariateDerivative2 m1      = pa.add(e0).subtract(FastMath.sin(e0).multiply(e));

  159.         // Current mean longitude
  160.         final UnivariateDerivative2 correction = dTpr.
  161.                                                  subtract(w.multiply(GLONASS_MEAN_DRACONIAN_PERIOD + glonassOrbit.getDeltaT())).
  162.                                                  subtract(w.multiply(w).multiply(glonassOrbit.getDeltaTDot()));
  163.         final UnivariateDerivative2 m = m1.add(n.multiply(correction));

  164.         // Take into consideration the periodic perturbations
  165.         final FieldSinCos<UnivariateDerivative2> scPa = FastMath.sinCos(pa);
  166.         final UnivariateDerivative2 h = e.multiply(scPa.sin());
  167.         final UnivariateDerivative2 l = e.multiply(scPa.cos());
  168.         // δa1
  169.         final UnivariateDerivative2[] d1 = getParameterDifferentials(sma, i, h, l, m1);
  170.         // δa2
  171.         final UnivariateDerivative2[] d2 = getParameterDifferentials(sma, i, h, l, m);
  172.         // Apply corrections
  173.         final UnivariateDerivative2 smaCorr    = sma.add(d2[0]).subtract(d1[0]);
  174.         final UnivariateDerivative2 hCorr      = h.add(d2[1]).subtract(d1[1]);
  175.         final UnivariateDerivative2 lCorr      = l.add(d2[2]).subtract(d1[2]);
  176.         final UnivariateDerivative2 lambdaCorr = lambda.add(d2[3]).subtract(d1[3]);
  177.         final UnivariateDerivative2 iCorr      = i.add(d2[4]).subtract(d1[4]);
  178.         final UnivariateDerivative2 mCorr      = m.add(d2[5]).subtract(d1[5]);
  179.         final UnivariateDerivative2 eCorr      = FastMath.sqrt(hCorr.multiply(hCorr).add(lCorr.multiply(lCorr)));
  180.         final UnivariateDerivative2 paCorr;
  181.         if (eCorr.getValue() == 0.) {
  182.             paCorr = zero;
  183.         } else {
  184.             if (lCorr.getValue() == eCorr.getValue()) {
  185.                 paCorr = zero.add(0.5 * GNSSConstants.GLONASS_PI);
  186.             } else if (lCorr.getValue() == -eCorr.getValue()) {
  187.                 paCorr = zero.add(-0.5 * GNSSConstants.GLONASS_PI);
  188.             } else {
  189.                 paCorr = FastMath.atan2(hCorr, lCorr);
  190.             }
  191.         }

  192.         // Eccentric Anomaly
  193.         final UnivariateDerivative2 mk = mCorr.subtract(paCorr);
  194.         final UnivariateDerivative2 ek = getEccentricAnomaly(mk, eCorr);

  195.         // True Anomaly
  196.         final UnivariateDerivative2 vk =  getTrueAnomaly(ek, eCorr);

  197.         // Argument of Latitude
  198.         final UnivariateDerivative2 phik = vk.add(paCorr);

  199.         // Corrected Radius
  200.         final UnivariateDerivative2 pCorr = smaCorr.multiply(eCorr.multiply(eCorr).negate().add(1.0));
  201.         final UnivariateDerivative2 rk    = pCorr.divide(eCorr.multiply(FastMath.cos(vk)).add(1.0));

  202.         // Positions in orbital plane
  203.         final FieldSinCos<UnivariateDerivative2> scPhik = FastMath.sinCos(phik);
  204.         final UnivariateDerivative2 xk = scPhik.cos().multiply(rk);
  205.         final UnivariateDerivative2 yk = scPhik.sin().multiply(rk);

  206.         // Coordinates of position
  207.         final FieldSinCos<UnivariateDerivative2> scL = FastMath.sinCos(lambdaCorr);
  208.         final FieldSinCos<UnivariateDerivative2> scI = FastMath.sinCos(iCorr);
  209.         final FieldVector3D<UnivariateDerivative2> positionwithDerivatives =
  210.                         new FieldVector3D<>(xk.multiply(scL.cos()).subtract(yk.multiply(scL.sin()).multiply(scI.cos())),
  211.                                             xk.multiply(scL.sin()).add(yk.multiply(scL.cos()).multiply(scI.cos())),
  212.                                             yk.multiply(scI.sin()));

  213.         return new PVCoordinates(new Vector3D(positionwithDerivatives.getX().getValue(),
  214.                                               positionwithDerivatives.getY().getValue(),
  215.                                               positionwithDerivatives.getZ().getValue()),
  216.                                  new Vector3D(positionwithDerivatives.getX().getFirstDerivative(),
  217.                                               positionwithDerivatives.getY().getFirstDerivative(),
  218.                                               positionwithDerivatives.getZ().getFirstDerivative()),
  219.                                  new Vector3D(positionwithDerivatives.getX().getSecondDerivative(),
  220.                                               positionwithDerivatives.getY().getSecondDerivative(),
  221.                                               positionwithDerivatives.getZ().getSecondDerivative()));
  222.     }

  223.     /**
  224.      * Gets eccentric anomaly from mean anomaly.
  225.      * <p>The algorithm used to solve the Kepler equation has been published in:
  226.      * "Procedures for  solving Kepler's Equation", A. W. Odell and R. H. Gooding,
  227.      * Celestial Mechanics 38 (1986) 307-334</p>
  228.      * <p>It has been copied from the OREKIT library (KeplerianOrbit class).</p>
  229.      *
  230.      * @param mk the mean anomaly (rad)
  231.      * @param e the eccentricity
  232.      * @return the eccentric anomaly (rad)
  233.      */
  234.     private UnivariateDerivative2 getEccentricAnomaly(final UnivariateDerivative2 mk, final UnivariateDerivative2 e) {

  235.         // reduce M to [-PI PI] interval
  236.         final UnivariateDerivative2 reducedM = new UnivariateDerivative2(MathUtils.normalizeAngle(mk.getValue(), 0.0),
  237.                                                                          mk.getFirstDerivative(),
  238.                                                                          mk.getSecondDerivative());

  239.         // compute start value according to A. W. Odell and R. H. Gooding S12 starter
  240.         UnivariateDerivative2 ek;
  241.         if (FastMath.abs(reducedM.getValue()) < 1.0 / 6.0) {
  242.             if (FastMath.abs(reducedM.getValue()) < Precision.SAFE_MIN) {
  243.                 // this is an Orekit change to the S12 starter.
  244.                 // If reducedM is 0.0, the derivative of cbrt is infinite which induces NaN appearing later in
  245.                 // the computation. As in this case E and M are almost equal, we initialize ek with reducedM
  246.                 ek = reducedM;
  247.             } else {
  248.                 // this is the standard S12 starter
  249.                 ek = reducedM.add(reducedM.multiply(6).cbrt().subtract(reducedM).multiply(e));
  250.             }
  251.         } else {
  252.             if (reducedM.getValue() < 0) {
  253.                 final UnivariateDerivative2 w = reducedM.add(FastMath.PI);
  254.                 ek = reducedM.add(w.multiply(-A).divide(w.subtract(B)).subtract(FastMath.PI).subtract(reducedM).multiply(e));
  255.             } else {
  256.                 final UnivariateDerivative2 minusW = reducedM.subtract(FastMath.PI);
  257.                 ek = reducedM.add(minusW.multiply(A).divide(minusW.add(B)).add(FastMath.PI).subtract(reducedM).multiply(e));
  258.             }
  259.         }

  260.         final UnivariateDerivative2 e1 = e.negate().add(1.0);
  261.         final boolean noCancellationRisk = (e1.getValue() + ek.getValue() * ek.getValue() / 6) >= 0.1;

  262.         // perform two iterations, each consisting of one Halley step and one Newton-Raphson step
  263.         for (int j = 0; j < 2; ++j) {
  264.             final UnivariateDerivative2 f;
  265.             UnivariateDerivative2 fd;
  266.             final UnivariateDerivative2 fdd  = ek.sin().multiply(e);
  267.             final UnivariateDerivative2 fddd = ek.cos().multiply(e);
  268.             if (noCancellationRisk) {
  269.                 f  = ek.subtract(fdd).subtract(reducedM);
  270.                 fd = fddd.subtract(1).negate();
  271.             } else {
  272.                 f  = eMeSinE(ek, e).subtract(reducedM);
  273.                 final UnivariateDerivative2 s = ek.multiply(0.5).sin();
  274.                 fd = s.multiply(s).multiply(e.multiply(2.0)).add(e1);
  275.             }
  276.             final UnivariateDerivative2 dee = f.multiply(fd).divide(f.multiply(0.5).multiply(fdd).subtract(fd.multiply(fd)));

  277.             // update eccentric anomaly, using expressions that limit underflow problems
  278.             final UnivariateDerivative2 w = fd.add(dee.multiply(0.5).multiply(fdd.add(dee.multiply(fdd).divide(3))));
  279.             fd = fd.add(dee.multiply(fdd.add(dee.multiply(0.5).multiply(fdd))));
  280.             ek = ek.subtract(f.subtract(dee.multiply(fd.subtract(w))).divide(fd));
  281.         }

  282.         // expand the result back to original range
  283.         ek = ek.add(mk.getValue() - reducedM.getValue());

  284.         // Returns the eccentric anomaly
  285.         return ek;
  286.     }

  287.     /**
  288.      * Accurate computation of E - e sin(E).
  289.      *
  290.      * @param E eccentric anomaly
  291.      * @param ecc the eccentricity
  292.      * @return E - e sin(E)
  293.      */
  294.     private UnivariateDerivative2 eMeSinE(final UnivariateDerivative2 E, final UnivariateDerivative2 ecc) {
  295.         UnivariateDerivative2 x = E.sin().multiply(ecc.negate().add(1.0));
  296.         final UnivariateDerivative2 mE2 = E.negate().multiply(E);
  297.         UnivariateDerivative2 term = E;
  298.         UnivariateDerivative2 d    = E.getField().getZero();
  299.         // the inequality test below IS intentional and should NOT be replaced by a check with a small tolerance
  300.         for (UnivariateDerivative2 x0 = d.add(Double.NaN); !Double.valueOf(x.getValue()).equals(Double.valueOf(x0.getValue()));) {
  301.             d = d.add(2);
  302.             term = term.multiply(mE2.divide(d.multiply(d.add(1))));
  303.             x0 = x;
  304.             x = x.subtract(term);
  305.         }
  306.         return x;
  307.     }

  308.     /** Gets true anomaly from eccentric anomaly.
  309.     *
  310.     * @param ek the eccentric anomaly (rad)
  311.     * @param ecc the eccentricity
  312.     * @return the true anomaly (rad)
  313.     */
  314.     private UnivariateDerivative2 getTrueAnomaly(final UnivariateDerivative2 ek, final UnivariateDerivative2 ecc) {
  315.         final UnivariateDerivative2 svk = ek.sin().multiply(FastMath.sqrt( ecc.multiply(ecc).negate().add(1.0)));
  316.         final UnivariateDerivative2 cvk = ek.cos().subtract(ecc);
  317.         return svk.atan2(cvk);
  318.     }

  319.     /**
  320.      * Get the interval of prediction.
  321.      *
  322.      * @param date the considered date
  323.      * @return the duration from GLONASS orbit Reference epoch (s)
  324.      */
  325.     private UnivariateDerivative2 getdTpr(final AbsoluteDate date) {
  326.         final TimeScale glonass = dataContext.getTimeScales().getGLONASS();
  327.         final GLONASSDate tEnd = new GLONASSDate(date, glonass);
  328.         final GLONASSDate tSta = new GLONASSDate(glonassOrbit.getDate(), glonass);
  329.         final int n  = tEnd.getDayNumber();
  330.         final int na = tSta.getDayNumber();
  331.         final int deltaN;
  332.         if (na == 27) {
  333.             deltaN = n - na - FastMath.round((float) (n - na) / 1460) * 1460;
  334.         } else {
  335.             deltaN = n - na - FastMath.round((float) (n - na) / 1461) * 1461;
  336.         }
  337.         final UnivariateDerivative2 ti = new UnivariateDerivative2(tEnd.getSecInDay(), 1.0, 0.0);

  338.         return ti.subtract(glonassOrbit.getTime()).add(86400 * deltaN);
  339.     }

  340.     /**
  341.      * Computes the semi-major axis of orbit using technique of successive approximations.
  342.      * @param tDR mean draconique period (s)
  343.      * @param i current inclination (rad)
  344.      * @param e eccentricity
  345.      * @return the semi-major axis (m).
  346.      */
  347.     private UnivariateDerivative2 computeSma(final UnivariateDerivative2 tDR,
  348.                                              final UnivariateDerivative2 i,
  349.                                              final UnivariateDerivative2 e) {

  350.         // Zero
  351.         final UnivariateDerivative2 zero = tDR.getField().getZero();

  352.         // If one of the input parameter is equal to Double.NaN, an infinite loop can occur.
  353.         // In that case, we do not compute the value of the semi major axis.
  354.         // We decided to return a Double.NaN value instead.
  355.         if (Double.isNaN(tDR.getValue()) || Double.isNaN(i.getValue()) || Double.isNaN(e.getValue())) {
  356.             return zero.add(Double.NaN);
  357.         }

  358.         // Common parameters
  359.         final UnivariateDerivative2 sinI         = FastMath.sin(i);
  360.         final UnivariateDerivative2 sin2I        = sinI.multiply(sinI);
  361.         final UnivariateDerivative2 ome2         = e.multiply(e).negate().add(1.0);
  362.         final UnivariateDerivative2 ome2Pow3o2   = FastMath.sqrt(ome2).multiply(ome2);
  363.         final UnivariateDerivative2 pa           = zero.add(glonassOrbit.getPa());
  364.         final UnivariateDerivative2 cosPA        = FastMath.cos(pa);
  365.         final UnivariateDerivative2 opecosPA     = e.multiply(cosPA).add(1.0);
  366.         final UnivariateDerivative2 opecosPAPow2 = opecosPA.multiply(opecosPA);
  367.         final UnivariateDerivative2 opecosPAPow3 = opecosPAPow2.multiply(opecosPA);

  368.         // Initial approximation
  369.         UnivariateDerivative2 tOCK = tDR;

  370.         // Successive approximations
  371.         // The process of approximation ends when fulfilling the following condition: |a(n+1) - a(n)| < 1cm
  372.         UnivariateDerivative2 an   = zero;
  373.         UnivariateDerivative2 anp1 = zero;
  374.         boolean isLastStep = false;
  375.         while (!isLastStep) {

  376.             // a(n+1) computation
  377.             final UnivariateDerivative2 tOCKo2p     = tOCK.divide(2.0 * GNSSConstants.GLONASS_PI);
  378.             final UnivariateDerivative2 tOCKo2pPow2 = tOCKo2p.multiply(tOCKo2p);
  379.             anp1 = FastMath.cbrt(tOCKo2pPow2.multiply(GNSSConstants.GLONASS_MU));

  380.             // p(n+1) computation
  381.             final UnivariateDerivative2 p = anp1.multiply(ome2);

  382.             // Tock(n+1) computation
  383.             final UnivariateDerivative2 aeop  = p.divide(GLONASS_EARTH_EQUATORIAL_RADIUS).reciprocal();
  384.             final UnivariateDerivative2 aeop2 = aeop.multiply(aeop);
  385.             final UnivariateDerivative2 term1 = aeop2.multiply(GLONASS_J20).multiply(1.5);
  386.             final UnivariateDerivative2 term2 = sin2I.multiply(2.5).negate().add(2.0);
  387.             final UnivariateDerivative2 term3 = ome2Pow3o2.divide(opecosPAPow2);
  388.             final UnivariateDerivative2 term4 = opecosPAPow3.divide(ome2);
  389.             tOCK = tDR.divide(term1.multiply(term2.multiply(term3).add(term4)).negate().add(1.0));

  390.             // Check convergence
  391.             if (FastMath.abs(anp1.subtract(an).getReal()) <= 0.01) {
  392.                 isLastStep = true;
  393.             }

  394.             an = anp1;
  395.         }

  396.         return an;

  397.     }

  398.     /**
  399.      * Computes the current longitude of the ascending node.
  400.      * @param dTpr interval of prediction (s)
  401.      * @param n mean motion (rad/s)
  402.      * @param aeop2 square of the ratio between the radius of the ellipsoid and p, with p = sma * (1 - ecc²)
  403.      * @param i inclination (rad)
  404.      * @return the current longitude of the ascending node (rad)
  405.      */
  406.     private UnivariateDerivative2 computeLambda(final UnivariateDerivative2 dTpr,
  407.                                                 final UnivariateDerivative2 n,
  408.                                                 final UnivariateDerivative2 aeop2,
  409.                                                 final UnivariateDerivative2 i) {
  410.         final UnivariateDerivative2 cosI = FastMath.cos(i);
  411.         final UnivariateDerivative2 precession = aeop2.multiply(n).multiply(cosI).multiply(1.5 * GLONASS_J20);
  412.         return dTpr.multiply(precession.add(GLONASS_AV)).negate().add(glonassOrbit.getLambda());
  413.     }

  414.     /**
  415.      * Computes the current argument of perigee.
  416.      * @param dTpr interval of prediction (s)
  417.      * @param n mean motion (rad/s)
  418.      * @param aeop2 square of the ratio between the radius of the ellipsoid and p, with p = sma * (1 - ecc²)
  419.      * @param i inclination (rad)
  420.      * @return the current argument of perigee (rad)
  421.      */
  422.     private UnivariateDerivative2 computePA(final UnivariateDerivative2 dTpr,
  423.                                             final UnivariateDerivative2 n,
  424.                                             final UnivariateDerivative2 aeop2,
  425.                                             final UnivariateDerivative2 i) {
  426.         final UnivariateDerivative2 cosI  = FastMath.cos(i);
  427.         final UnivariateDerivative2 cos2I = cosI.multiply(cosI);
  428.         final UnivariateDerivative2 precession = aeop2.multiply(n).multiply(cos2I.multiply(5.0).negate().add(1.0)).multiply(0.75 * GLONASS_J20);
  429.         return dTpr.multiply(precession).negate().add(glonassOrbit.getPa());
  430.     }

  431.     /**
  432.      * Computes the differentials δa<sub>i</sub>.
  433.      * <p>
  434.      * The value of i depends of the type of longitude (i = 2 for the current mean longitude;
  435.      * i = 1 for the mean longitude at the instant the spacecraft passes the current ascending node)
  436.      * </p>
  437.      * @param a semi-major axis (m)
  438.      * @param i inclination (rad)
  439.      * @param h x component of the eccentricity (rad)
  440.      * @param l y component of the eccentricity (rad)
  441.      * @param m longitude (current or at the ascending node instant)
  442.      * @return the differentials of the orbital parameters
  443.      */
  444.     private UnivariateDerivative2[] getParameterDifferentials(final UnivariateDerivative2 a, final UnivariateDerivative2 i,
  445.                                                               final UnivariateDerivative2 h, final UnivariateDerivative2 l,
  446.                                                               final UnivariateDerivative2 m) {

  447.         // B constant
  448.         final UnivariateDerivative2 aeoa  = a.divide(GLONASS_EARTH_EQUATORIAL_RADIUS).reciprocal();
  449.         final UnivariateDerivative2 aeoa2 = aeoa.multiply(aeoa);
  450.         final UnivariateDerivative2 b     = aeoa2.multiply(1.5 * GLONASS_J20);

  451.         // Commons Parameters
  452.         final FieldSinCos<UnivariateDerivative2> scI   = FastMath.sinCos(i);
  453.         final FieldSinCos<UnivariateDerivative2> scLk  = FastMath.sinCos(m);
  454.         final FieldSinCos<UnivariateDerivative2> sc2Lk = FieldSinCos.sum(scLk, scLk);
  455.         final FieldSinCos<UnivariateDerivative2> sc3Lk = FieldSinCos.sum(scLk, sc2Lk);
  456.         final FieldSinCos<UnivariateDerivative2> sc4Lk = FieldSinCos.sum(sc2Lk, sc2Lk);
  457.         final UnivariateDerivative2 cosI   = scI.cos();
  458.         final UnivariateDerivative2 sinI   = scI.sin();
  459.         final UnivariateDerivative2 cosI2  = cosI.multiply(cosI);
  460.         final UnivariateDerivative2 sinI2  = sinI.multiply(sinI);
  461.         final UnivariateDerivative2 cosLk  = scLk.cos();
  462.         final UnivariateDerivative2 sinLk  = scLk.sin();
  463.         final UnivariateDerivative2 cos2Lk = sc2Lk.cos();
  464.         final UnivariateDerivative2 sin2Lk = sc2Lk.sin();
  465.         final UnivariateDerivative2 cos3Lk = sc3Lk.cos();
  466.         final UnivariateDerivative2 sin3Lk = sc3Lk.sin();
  467.         final UnivariateDerivative2 cos4Lk = sc4Lk.cos();
  468.         final UnivariateDerivative2 sin4Lk = sc4Lk.sin();

  469.         // h*cos(nLk), l*cos(nLk), h*sin(nLk) and l*sin(nLk)
  470.         // n = 1
  471.         final UnivariateDerivative2 hCosLk = h.multiply(cosLk);
  472.         final UnivariateDerivative2 hSinLk = h.multiply(sinLk);
  473.         final UnivariateDerivative2 lCosLk = l.multiply(cosLk);
  474.         final UnivariateDerivative2 lSinLk = l.multiply(sinLk);
  475.         // n = 2
  476.         final UnivariateDerivative2 hCos2Lk = h.multiply(cos2Lk);
  477.         final UnivariateDerivative2 hSin2Lk = h.multiply(sin2Lk);
  478.         final UnivariateDerivative2 lCos2Lk = l.multiply(cos2Lk);
  479.         final UnivariateDerivative2 lSin2Lk = l.multiply(sin2Lk);
  480.         // n = 3
  481.         final UnivariateDerivative2 hCos3Lk = h.multiply(cos3Lk);
  482.         final UnivariateDerivative2 hSin3Lk = h.multiply(sin3Lk);
  483.         final UnivariateDerivative2 lCos3Lk = l.multiply(cos3Lk);
  484.         final UnivariateDerivative2 lSin3Lk = l.multiply(sin3Lk);
  485.         // n = 4
  486.         final UnivariateDerivative2 hCos4Lk = h.multiply(cos4Lk);
  487.         final UnivariateDerivative2 hSin4Lk = h.multiply(sin4Lk);
  488.         final UnivariateDerivative2 lCos4Lk = l.multiply(cos4Lk);
  489.         final UnivariateDerivative2 lSin4Lk = l.multiply(sin4Lk);

  490.         // 1 - (3 / 2)*sin²i
  491.         final UnivariateDerivative2 om3o2xSinI2 = sinI2.multiply(1.5).negate().add(1.0);

  492.         // Compute Differentials
  493.         // δa
  494.         final UnivariateDerivative2 dakT1 = b.multiply(2.0).multiply(om3o2xSinI2).multiply(lCosLk.add(hSinLk));
  495.         final UnivariateDerivative2 dakT2 = b.multiply(sinI2).multiply(hSinLk.multiply(0.5).subtract(lCosLk.multiply(0.5)).
  496.                                                                      add(cos2Lk).add(lCos3Lk.multiply(3.5)).add(hSin3Lk.multiply(3.5)));
  497.         final UnivariateDerivative2 dak = dakT1.add(dakT2);

  498.         // δh
  499.         final UnivariateDerivative2 dhkT1 = b.multiply(om3o2xSinI2).multiply(sinLk.add(lSin2Lk.multiply(1.5)).subtract(hCos2Lk.multiply(1.5)));
  500.         final UnivariateDerivative2 dhkT2 = b.multiply(sinI2).multiply(0.25).multiply(sinLk.subtract(sin3Lk.multiply(SEVEN_THIRD)).add(lSin2Lk.multiply(5.0)).
  501.                                                                                     subtract(lSin4Lk.multiply(8.5)).add(hCos4Lk.multiply(8.5)).add(hCos2Lk));
  502.         final UnivariateDerivative2 dhkT3 = lSin2Lk.multiply(cosI2).multiply(b).multiply(0.5).negate();
  503.         final UnivariateDerivative2 dhk = dhkT1.subtract(dhkT2).add(dhkT3);

  504.         // δl
  505.         final UnivariateDerivative2 dlkT1 = b.multiply(om3o2xSinI2).multiply(cosLk.add(lCos2Lk.multiply(1.5)).add(hSin2Lk.multiply(1.5)));
  506.         final UnivariateDerivative2 dlkT2 = b.multiply(sinI2).multiply(0.25).multiply(cosLk.negate().subtract(cos3Lk.multiply(SEVEN_THIRD)).subtract(hSin2Lk.multiply(5.0)).
  507.                                                                                     subtract(lCos4Lk.multiply(8.5)).subtract(hSin4Lk.multiply(8.5)).add(lCos2Lk));
  508.         final UnivariateDerivative2 dlkT3 = hSin2Lk.multiply(cosI2).multiply(b).multiply(0.5);
  509.         final UnivariateDerivative2 dlk = dlkT1.subtract(dlkT2).add(dlkT3);

  510.         // δλ
  511.         final UnivariateDerivative2 dokT1 = b.negate().multiply(cosI);
  512.         final UnivariateDerivative2 dokT2 = lSinLk.multiply(3.5).subtract(hCosLk.multiply(2.5)).subtract(sin2Lk.multiply(0.5)).
  513.                                           subtract(lSin3Lk.multiply(SEVEN_SIXTH)).add(hCos3Lk.multiply(SEVEN_SIXTH));
  514.         final UnivariateDerivative2 dok = dokT1.multiply(dokT2);

  515.         // δi
  516.         final UnivariateDerivative2 dik = b.multiply(sinI).multiply(cosI).multiply(0.5).
  517.                         multiply(lCosLk.negate().add(hSinLk).add(cos2Lk).add(lCos3Lk.multiply(SEVEN_THIRD)).add(hSin3Lk.multiply(SEVEN_THIRD)));

  518.         // δL
  519.         final UnivariateDerivative2 dLkT1 = b.multiply(2.0).multiply(om3o2xSinI2).multiply(lSinLk.multiply(1.75).subtract(hCosLk.multiply(1.75)));
  520.         final UnivariateDerivative2 dLkT2 = b.multiply(sinI2).multiply(3.0).multiply(hCosLk.multiply(SEVEN_24TH).negate().subtract(lSinLk.multiply(SEVEN_24TH)).
  521.                                                                                    subtract(hCos3Lk.multiply(FN_72TH)).add(lSin3Lk.multiply(FN_72TH)).add(sin2Lk.multiply(0.25)));
  522.         final UnivariateDerivative2 dLkT3 = b.multiply(cosI2).multiply(lSinLk.multiply(3.5).subtract(hCosLk.multiply(2.5)).subtract(sin2Lk.multiply(0.5)).
  523.                                                                      subtract(lSin3Lk.multiply(SEVEN_SIXTH)).add(hCos3Lk.multiply(SEVEN_SIXTH)));
  524.         final UnivariateDerivative2 dLk = dLkT1.add(dLkT2).add(dLkT3);

  525.         // Final array
  526.         final UnivariateDerivative2[] differentials = MathArrays.buildArray(a.getField(), 6);
  527.         differentials[0] = dak.multiply(a);
  528.         differentials[1] = dhk;
  529.         differentials[2] = dlk;
  530.         differentials[3] = dok;
  531.         differentials[4] = dik;
  532.         differentials[5] = dLk;

  533.         return differentials;
  534.     }

  535.     /** {@inheritDoc} */
  536.     protected double getMass(final AbsoluteDate date) {
  537.         return mass;
  538.     }

  539.     /**
  540.      * Get the Earth gravity coefficient used for GLONASS propagation.
  541.      * @return the Earth gravity coefficient.
  542.      */
  543.     public static double getMU() {
  544.         return GNSSConstants.GLONASS_MU;
  545.     }

  546.     /**
  547.      * Gets the underlying GLONASS orbital elements.
  548.      *
  549.      * @return the underlying GLONASS orbital elements
  550.      */
  551.     public GLONASSOrbitalElements getGLONASSOrbitalElements() {
  552.         return glonassOrbit;
  553.     }

  554.     /**
  555.      * Gets the Earth Centered Inertial frame used to propagate the orbit.
  556.      * @return the ECI frame
  557.      */
  558.     public Frame getECI() {
  559.         return eci;
  560.     }

  561.     /**
  562.      * Gets the Earth Centered Earth Fixed frame used to propagate GLONASS orbits.
  563.      * @return the ECEF frame
  564.      */
  565.     public Frame getECEF() {
  566.         return ecef;
  567.     }

  568.     /** {@inheritDoc} */
  569.     public Frame getFrame() {
  570.         return eci;
  571.     }

  572.     /** {@inheritDoc} */
  573.     public void resetInitialState(final SpacecraftState state) {
  574.         throw new OrekitException(OrekitMessages.NON_RESETABLE_STATE);
  575.     }

  576.     /** {@inheritDoc} */
  577.     protected void resetIntermediateState(final SpacecraftState state, final boolean forward) {
  578.         throw new OrekitException(OrekitMessages.NON_RESETABLE_STATE);
  579.     }

  580.     /** {@inheritDoc} */
  581.     protected Orbit propagateOrbit(final AbsoluteDate date) {
  582.         // Gets the PVCoordinates in ECEF frame
  583.         final PVCoordinates pvaInECEF = propagateInEcef(date);
  584.         // Transforms the PVCoordinates to ECI frame
  585.         final PVCoordinates pvaInECI = ecef.getTransformTo(eci, date).transformPVCoordinates(pvaInECEF);
  586.         // Returns the Cartesian orbit
  587.         return new CartesianOrbit(pvaInECI, eci, date, GNSSConstants.GLONASS_MU);
  588.     }

  589. }