BistaticRangeRate.java
- /* Copyright 2002-2022 CS GROUP
- * Licensed to CS GROUP (CS) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * CS licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.orekit.estimation.measurements;
- import java.util.Arrays;
- import java.util.Collections;
- import java.util.HashMap;
- import java.util.Map;
- import org.hipparchus.analysis.differentiation.Gradient;
- import org.hipparchus.analysis.differentiation.GradientField;
- import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
- import org.orekit.frames.FieldTransform;
- import org.orekit.propagation.SpacecraftState;
- import org.orekit.time.AbsoluteDate;
- import org.orekit.time.FieldAbsoluteDate;
- import org.orekit.utils.ParameterDriver;
- import org.orekit.utils.TimeStampedFieldPVCoordinates;
- import org.orekit.utils.TimeStampedPVCoordinates;
- /** Class modeling a bistatic range rate measurement using
- * an emitter ground station and a receiver ground station.
- * <p>
- * The measurement is considered to be a signal:
- * <ul>
- * <li>Emitted from the emitter ground station</li>
- * <li>Reflected on the spacecraft</li>
- * <li>Received on the receiver ground station</li>
- * </ul>
- * The date of the measurement corresponds to the reception on ground of the reflected signal.
- * The quantity measured at the receiver is the bistatic radial velocity as the sum of the radial
- * velocities with respect to the two stations.
- * <p>
- * The motion of the stations and the spacecraft during the signal flight time are taken into account.
- * </p><p>
- * The Doppler measurement can be obtained by multiplying the velocity by (fe/c), where
- * fe is the emission frequency.
- * </p>
- *
- * @author Pascal Parraud
- * @since 11.2
- */
- public class BistaticRangeRate extends AbstractMeasurement<BistaticRangeRate> {
- /** Type of the measurement. */
- public static final String MEASUREMENT_TYPE = "BistaticRangeRate";
- /** Emitter ground station. */
- private final GroundStation emitter;
- /** Receiver ground station. */
- private final GroundStation receiver;
- /** Simple constructor.
- * @param emitter emitter ground station
- * @param receiver receiver ground station
- * @param date date of the measurement
- * @param rangeRate observed value, m/s
- * @param sigma theoretical standard deviation
- * @param baseWeight base weight
- * @param satellite satellite related to this measurement
- */
- public BistaticRangeRate(final GroundStation emitter, final GroundStation receiver,
- final AbsoluteDate date, final double rangeRate, final double sigma,
- final double baseWeight, final ObservableSatellite satellite) {
- super(date, rangeRate, sigma, baseWeight, Collections.singletonList(satellite));
- // add parameter drivers for the emitter, clock offset is not used
- addParameterDriver(emitter.getEastOffsetDriver());
- addParameterDriver(emitter.getNorthOffsetDriver());
- addParameterDriver(emitter.getZenithOffsetDriver());
- addParameterDriver(emitter.getPrimeMeridianOffsetDriver());
- addParameterDriver(emitter.getPrimeMeridianDriftDriver());
- addParameterDriver(emitter.getPolarOffsetXDriver());
- addParameterDriver(emitter.getPolarDriftXDriver());
- addParameterDriver(emitter.getPolarOffsetYDriver());
- addParameterDriver(emitter.getPolarDriftYDriver());
- // add parameter drivers for the receiver
- addParameterDriver(receiver.getClockOffsetDriver());
- addParameterDriver(receiver.getEastOffsetDriver());
- addParameterDriver(receiver.getNorthOffsetDriver());
- addParameterDriver(receiver.getZenithOffsetDriver());
- addParameterDriver(receiver.getPrimeMeridianOffsetDriver());
- addParameterDriver(receiver.getPrimeMeridianDriftDriver());
- addParameterDriver(receiver.getPolarOffsetXDriver());
- addParameterDriver(receiver.getPolarDriftXDriver());
- addParameterDriver(receiver.getPolarOffsetYDriver());
- addParameterDriver(receiver.getPolarDriftYDriver());
- this.emitter = emitter;
- this.receiver = receiver;
- }
- /** Get the emitter ground station.
- * @return emitter ground station
- */
- public GroundStation getEmitterStation() {
- return emitter;
- }
- /** Get the receiver ground station.
- * @return receiver ground station
- */
- public GroundStation getReceiverStation() {
- return receiver;
- }
- /** {@inheritDoc} */
- @Override
- protected EstimatedMeasurement<BistaticRangeRate> theoreticalEvaluation(final int iteration,
- final int evaluation,
- final SpacecraftState[] states) {
- final SpacecraftState state = states[0];
- // Bistatic range rate derivatives are computed with respect to:
- // - Spacecraft state in inertial frame
- // - Emitter station parameters
- // - Receiver station parameters
- // --------------------------
- // - 0..2 - Position of the spacecraft in inertial frame
- // - 3..5 - Velocity of the spacecraft in inertial frame
- // - 6..n - stations' parameters (stations' offsets, pole, prime meridian...)
- int nbParams = 6;
- final Map<String, Integer> indices = new HashMap<String, Integer>();
- for (ParameterDriver driver : getParametersDrivers()) {
- // we have to check for duplicate keys because emitter and receiver stations share
- // pole and prime meridian parameters names that must be considered
- // as one set only (they are combined together by the estimation engine)
- if (driver.isSelected() && !indices.containsKey(driver.getName())) {
- indices.put(driver.getName(), nbParams++);
- }
- }
- final FieldVector3D<Gradient> zero = FieldVector3D.getZero(GradientField.getField(nbParams));
- // coordinates of the spacecraft as a gradient
- final TimeStampedFieldPVCoordinates<Gradient> pvaG = getCoordinates(state, 0, nbParams);
- // transform between receiver station frame and inertial frame
- // at the real date of measurement, i.e. taking station clock offset into account
- final FieldTransform<Gradient> receiverToInertial =
- receiver.getOffsetToInertial(state.getFrame(), getDate(), nbParams, indices);
- final FieldAbsoluteDate<Gradient> measurementDateG = receiverToInertial.getFieldDate();
- // Receiver PV in inertial frame at the end of the downlink leg
- final TimeStampedFieldPVCoordinates<Gradient> receiverPV =
- receiverToInertial.transformPVCoordinates(new TimeStampedFieldPVCoordinates<>(measurementDateG,
- zero, zero, zero));
- // Compute propagation times
- // (if state has already been set up to pre-compensate propagation delay,
- // we will have delta == tauD and transitState will be the same as state)
- // Downlink delay
- final Gradient tauD = signalTimeOfFlight(pvaG, receiverPV.getPosition(), measurementDateG);
- final Gradient delta = measurementDateG.durationFrom(state.getDate());
- final Gradient deltaMTauD = delta.subtract(tauD);
- // Transit state
- final SpacecraftState transitState = state.shiftedBy(deltaMTauD.getValue());
- // Transit PV
- final TimeStampedFieldPVCoordinates<Gradient> transitPV = pvaG.shiftedBy(deltaMTauD);
- // Downlink range-rate
- final EstimatedMeasurement<BistaticRangeRate> evalDownlink =
- oneWayTheoreticalEvaluation(iteration, evaluation, true,
- receiverPV, transitPV, transitState, indices);
- // transform between emitter station frame and inertial frame at the transit date
- // clock offset from receiver is already compensated
- final FieldTransform<Gradient> emitterToInertial =
- emitter.getOffsetToInertial(state.getFrame(), transitPV.getDate(), nbParams, indices);
- // emitter PV in inertial frame at the end of the uplink leg
- final TimeStampedFieldPVCoordinates<Gradient> emitterPV =
- emitterToInertial.transformPVCoordinates(new TimeStampedFieldPVCoordinates<>(transitPV.getDate(),
- zero, zero, zero));
- // Uplink delay
- final Gradient tauU = signalTimeOfFlight(emitterPV, transitPV.getPosition(), transitPV.getDate());
- // emitter position in inertial frame at the end of the uplink leg
- final TimeStampedFieldPVCoordinates<Gradient> emitterUplink = emitterPV.shiftedBy(tauU.negate());
- // Uplink range-rate
- final EstimatedMeasurement<BistaticRangeRate> evalUplink =
- oneWayTheoreticalEvaluation(iteration, evaluation, false,
- emitterUplink, transitPV, transitState, indices);
- // combine uplink and downlink values
- final EstimatedMeasurement<BistaticRangeRate> estimated =
- new EstimatedMeasurement<>(this, iteration, evaluation,
- evalDownlink.getStates(),
- new TimeStampedPVCoordinates[] {
- evalUplink.getParticipants()[0],
- evalDownlink.getParticipants()[0],
- evalDownlink.getParticipants()[1]
- });
- estimated.setEstimatedValue(evalDownlink.getEstimatedValue()[0] + evalUplink.getEstimatedValue()[0]);
- // combine uplink and downlink partial derivatives with respect to state
- final double[][] sd1 = evalDownlink.getStateDerivatives(0);
- final double[][] sd2 = evalUplink.getStateDerivatives(0);
- final double[][] sd = new double[sd1.length][sd1[0].length];
- for (int i = 0; i < sd.length; ++i) {
- for (int j = 0; j < sd[0].length; ++j) {
- sd[i][j] = sd1[i][j] + sd2[i][j];
- }
- }
- estimated.setStateDerivatives(0, sd);
- // combine uplink and downlink partial derivatives with respect to parameters
- evalDownlink.getDerivativesDrivers().forEach(driver -> {
- final double[] pd1 = evalDownlink.getParameterDerivatives(driver);
- final double[] pd2 = evalUplink.getParameterDerivatives(driver);
- final double[] pd = new double[pd1.length];
- for (int i = 0; i < pd.length; ++i) {
- pd[i] = pd1[i] + pd2[i];
- }
- estimated.setParameterDerivatives(driver, pd);
- });
- return estimated;
- }
- /** Evaluate range rate measurement in one-way.
- * @param iteration iteration number
- * @param evaluation evaluations counter
- * @param downlink indicator for downlink leg
- * @param stationPV station coordinates when signal is at station
- * @param transitPV spacecraft coordinates at onboard signal transit
- * @param transitState orbital state at onboard signal transit
- * @param indices indices of the estimated parameters in derivatives computations
- * @return theoretical value for the current leg
- */
- private EstimatedMeasurement<BistaticRangeRate> oneWayTheoreticalEvaluation(final int iteration, final int evaluation, final boolean downlink,
- final TimeStampedFieldPVCoordinates<Gradient> stationPV,
- final TimeStampedFieldPVCoordinates<Gradient> transitPV,
- final SpacecraftState transitState,
- final Map<String, Integer> indices) {
- // prepare the evaluation
- final EstimatedMeasurement<BistaticRangeRate> estimated =
- new EstimatedMeasurement<BistaticRangeRate>(this, iteration, evaluation,
- new SpacecraftState[] {
- transitState
- }, new TimeStampedPVCoordinates[] {
- (downlink ? transitPV : stationPV).toTimeStampedPVCoordinates(),
- (downlink ? stationPV : transitPV).toTimeStampedPVCoordinates()
- });
- // range rate value
- final FieldVector3D<Gradient> stationPosition = stationPV.getPosition();
- final FieldVector3D<Gradient> relativePosition = stationPosition.subtract(transitPV.getPosition());
- final FieldVector3D<Gradient> stationVelocity = stationPV.getVelocity();
- final FieldVector3D<Gradient> relativeVelocity = stationVelocity.subtract(transitPV.getVelocity());
- // radial direction
- final FieldVector3D<Gradient> lineOfSight = relativePosition.normalize();
- // range rate
- final Gradient rangeRate = FieldVector3D.dotProduct(relativeVelocity, lineOfSight);
- estimated.setEstimatedValue(rangeRate.getValue());
- // compute partial derivatives of (rr) with respect to spacecraft state Cartesian coordinates
- final double[] derivatives = rangeRate.getGradient();
- estimated.setStateDerivatives(0, Arrays.copyOfRange(derivatives, 0, 6));
- // set partial derivatives with respect to parameters
- for (final ParameterDriver driver : getParametersDrivers()) {
- final Integer index = indices.get(driver.getName());
- if (index != null) {
- estimated.setParameterDerivatives(driver, derivatives[index]);
- }
- }
- return estimated;
- }
- }