EstimatedEarthFrameProvider.java

  1. /* Copyright 2002-2022 CS GROUP
  2.  * Licensed to CS GROUP (CS) under one or more
  3.  * contributor license agreements.  See the NOTICE file distributed with
  4.  * this work for additional information regarding copyright ownership.
  5.  * CS licenses this file to You under the Apache License, Version 2.0
  6.  * (the "License"); you may not use this file except in compliance with
  7.  * the License.  You may obtain a copy of the License at
  8.  *
  9.  *   http://www.apache.org/licenses/LICENSE-2.0
  10.  *
  11.  * Unless required by applicable law or agreed to in writing, software
  12.  * distributed under the License is distributed on an "AS IS" BASIS,
  13.  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  14.  * See the License for the specific language governing permissions and
  15.  * limitations under the License.
  16.  */
  17. package org.orekit.estimation.measurements;

  18. import java.io.Serializable;
  19. import java.util.Map;

  20. import org.hipparchus.CalculusFieldElement;
  21. import org.hipparchus.analysis.differentiation.Gradient;
  22. import org.hipparchus.geometry.euclidean.threed.FieldRotation;
  23. import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
  24. import org.hipparchus.geometry.euclidean.threed.Rotation;
  25. import org.hipparchus.geometry.euclidean.threed.RotationConvention;
  26. import org.hipparchus.geometry.euclidean.threed.Vector3D;
  27. import org.hipparchus.util.FastMath;
  28. import org.orekit.errors.OrekitException;
  29. import org.orekit.errors.OrekitInternalError;
  30. import org.orekit.errors.OrekitMessages;
  31. import org.orekit.frames.FieldTransform;
  32. import org.orekit.frames.StaticTransform;
  33. import org.orekit.frames.Transform;
  34. import org.orekit.frames.TransformProvider;
  35. import org.orekit.time.AbsoluteDate;
  36. import org.orekit.time.FieldAbsoluteDate;
  37. import org.orekit.time.UT1Scale;
  38. import org.orekit.utils.IERSConventions;
  39. import org.orekit.utils.ParameterDriver;

  40. /** Class modeling an Earth frame whose Earth Orientation Parameters can be estimated.
  41.  * <p>
  42.  * This class adds parameters for an additional polar motion
  43.  * and an additional prime meridian orientation on top of an underlying regular Earth
  44.  * frame like {@link org.orekit.frames.FramesFactory#getITRF(IERSConventions, boolean) ITRF}.
  45.  * The polar motion and prime meridian orientation are applied <em>after</em> regular Earth
  46.  * orientation parameters, so the value of the estimated parameters will be correction to EOP,
  47.  * they will not be the complete EOP values by themselves. Basically, this means that for
  48.  * Earth, the following transforms are applied in order, between inertial frame and this frame:
  49.  * </p>
  50.  * <ol>
  51.  *   <li>precession/nutation, as theoretical model plus celestial pole EOP parameters</li>
  52.  *   <li>body rotation, as theoretical model plus prime meridian EOP parameters</li>
  53.  *   <li>polar motion, which is only from EOP parameters (no theoretical models)</li>
  54.  *   <li>additional body rotation, controlled by {@link #getPrimeMeridianOffsetDriver()} and {@link #getPrimeMeridianDriftDriver()}</li>
  55.  *   <li>additional polar motion, controlled by {@link #getPolarOffsetXDriver()}, {@link #getPolarDriftXDriver()},
  56.  *   {@link #getPolarOffsetYDriver()} and {@link #getPolarDriftYDriver()}</li>
  57.  * </ol>
  58.  * @author Luc Maisonobe
  59.  * @since 9.1
  60.  */
  61. public class EstimatedEarthFrameProvider implements TransformProvider {

  62.     /** Earth Angular Velocity, in rad/s, from TIRF model. */
  63.     public static final double EARTH_ANGULAR_VELOCITY = 7.292115146706979e-5;

  64.     /** Serializable UID. */
  65.     private static final long serialVersionUID = 20170922L;

  66.     /** Angular scaling factor.
  67.      * <p>
  68.      * We use a power of 2 to avoid numeric noise introduction
  69.      * in the multiplications/divisions sequences.
  70.      * </p>
  71.      */
  72.     private static final double ANGULAR_SCALE = FastMath.scalb(1.0, -22);

  73.     /** Underlying raw UT1. */
  74.     private final UT1Scale baseUT1;

  75.     /** Estimated UT1. */
  76.     private final transient UT1Scale estimatedUT1;

  77.     /** Driver for prime meridian offset. */
  78.     private final transient ParameterDriver primeMeridianOffsetDriver;

  79.     /** Driver for prime meridian drift. */
  80.     private final transient ParameterDriver primeMeridianDriftDriver;

  81.     /** Driver for pole offset along X. */
  82.     private final transient ParameterDriver polarOffsetXDriver;

  83.     /** Driver for pole drift along X. */
  84.     private final transient ParameterDriver polarDriftXDriver;

  85.     /** Driver for pole offset along Y. */
  86.     private final transient ParameterDriver polarOffsetYDriver;

  87.     /** Driver for pole drift along Y. */
  88.     private final transient ParameterDriver polarDriftYDriver;

  89.     /** Build an estimated Earth frame.
  90.      * <p>
  91.      * The initial values for the pole and prime meridian parametric linear models
  92.      * ({@link #getPrimeMeridianOffsetDriver()}, {@link #getPrimeMeridianDriftDriver()},
  93.      * {@link #getPolarOffsetXDriver()}, {@link #getPolarDriftXDriver()},
  94.      * {@link #getPolarOffsetXDriver()}, {@link #getPolarDriftXDriver()}) are set to 0.
  95.      * </p>
  96.      * @param baseUT1 underlying base UT1
  97.      * @since 9.1
  98.      */
  99.     public EstimatedEarthFrameProvider(final UT1Scale baseUT1) {

  100.         this.primeMeridianOffsetDriver = new ParameterDriver("prime-meridian-offset",
  101.                                                              0.0, ANGULAR_SCALE,
  102.                                                             -FastMath.PI, FastMath.PI);

  103.         this.primeMeridianDriftDriver = new ParameterDriver("prime-meridian-drift",
  104.                                                             0.0, ANGULAR_SCALE,
  105.                                                             Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY);

  106.         this.polarOffsetXDriver = new ParameterDriver("polar-offset-X",
  107.                                                       0.0, ANGULAR_SCALE,
  108.                                                       -FastMath.PI, FastMath.PI);

  109.         this.polarDriftXDriver = new ParameterDriver("polar-drift-X",
  110.                                                      0.0, ANGULAR_SCALE,
  111.                                                      Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY);

  112.         this.polarOffsetYDriver = new ParameterDriver("polar-offset-Y",
  113.                                                       0.0, ANGULAR_SCALE,
  114.                                                       -FastMath.PI, FastMath.PI);

  115.         this.polarDriftYDriver = new ParameterDriver("polar-drift-Y",
  116.                                                      0.0, ANGULAR_SCALE,
  117.                                                      Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY);

  118.         this.baseUT1      = baseUT1;
  119.         this.estimatedUT1 = new EstimatedUT1Scale();

  120.     }

  121.     /** Get a driver allowing to add a prime meridian rotation.
  122.      * <p>
  123.      * The parameter is an angle in radians. In order to convert this
  124.      * value to a DUT1 in seconds, the value must be divided by
  125.      * {@link #EARTH_ANGULAR_VELOCITY} (nominal Angular Velocity of Earth).
  126.      * </p>
  127.      * @return driver for prime meridian rotation
  128.      */
  129.     public ParameterDriver getPrimeMeridianOffsetDriver() {
  130.         return primeMeridianOffsetDriver;
  131.     }

  132.     /** Get a driver allowing to add a prime meridian rotation rate.
  133.      * <p>
  134.      * The parameter is an angle rate in radians per second. In order to convert this
  135.      * value to a LOD in seconds, the value must be multiplied by -86400 and divided by
  136.      * {@link #EARTH_ANGULAR_VELOCITY} (nominal Angular Velocity of Earth).
  137.      * </p>
  138.      * @return driver for prime meridian rotation rate
  139.      */
  140.     public ParameterDriver getPrimeMeridianDriftDriver() {
  141.         return primeMeridianDriftDriver;
  142.     }

  143.     /** Get a driver allowing to add a polar offset along X.
  144.      * <p>
  145.      * The parameter is an angle in radians
  146.      * </p>
  147.      * @return driver for polar offset along X
  148.      */
  149.     public ParameterDriver getPolarOffsetXDriver() {
  150.         return polarOffsetXDriver;
  151.     }

  152.     /** Get a driver allowing to add a polar drift along X.
  153.      * <p>
  154.      * The parameter is an angle rate in radians per second
  155.      * </p>
  156.      * @return driver for polar drift along X
  157.      */
  158.     public ParameterDriver getPolarDriftXDriver() {
  159.         return polarDriftXDriver;
  160.     }

  161.     /** Get a driver allowing to add a polar offset along Y.
  162.      * <p>
  163.      * The parameter is an angle in radians
  164.      * </p>
  165.      * @return driver for polar offset along Y
  166.      */
  167.     public ParameterDriver getPolarOffsetYDriver() {
  168.         return polarOffsetYDriver;
  169.     }

  170.     /** Get a driver allowing to add a polar drift along Y.
  171.      * <p>
  172.      * The parameter is an angle rate in radians per second
  173.      * </p>
  174.      * @return driver for polar drift along Y
  175.      */
  176.     public ParameterDriver getPolarDriftYDriver() {
  177.         return polarDriftYDriver;
  178.     }

  179.     /** Get the estimated UT1 time scale.
  180.      * @return estimated UT1 time scale
  181.      */
  182.     public UT1Scale getEstimatedUT1() {
  183.         return estimatedUT1;
  184.     }

  185.     /** {@inheritDoc} */
  186.     @Override
  187.     public Transform getTransform(final AbsoluteDate date) {

  188.         // take parametric prime meridian shift into account
  189.         final double theta    = linearModel(date, primeMeridianOffsetDriver, primeMeridianDriftDriver);
  190.         final double thetaDot = primeMeridianDriftDriver.getValue();
  191.         final Transform meridianShift =
  192.                         new Transform(date,
  193.                                       new Rotation(Vector3D.PLUS_K, theta, RotationConvention.FRAME_TRANSFORM),
  194.                                       new Vector3D(0, 0, thetaDot));

  195.         // take parametric pole shift into account
  196.         final double xpNeg     = -linearModel(date, polarOffsetXDriver, polarDriftXDriver);
  197.         final double ypNeg     = -linearModel(date, polarOffsetYDriver, polarDriftYDriver);
  198.         final double xpNegDot  = -polarDriftXDriver.getValue();
  199.         final double ypNegDot  = -polarDriftYDriver.getValue();
  200.         final Transform poleShift =
  201.                         new Transform(date,
  202.                                       new Transform(date,
  203.                                                     new Rotation(Vector3D.PLUS_J, xpNeg, RotationConvention.FRAME_TRANSFORM),
  204.                                                     new Vector3D(0.0, xpNegDot, 0.0)),
  205.                                       new Transform(date,
  206.                                                     new Rotation(Vector3D.PLUS_I, ypNeg, RotationConvention.FRAME_TRANSFORM),
  207.                                                     new Vector3D(ypNegDot, 0.0, 0.0)));

  208.         return new Transform(date, meridianShift, poleShift);

  209.     }

  210.     /** {@inheritDoc} */
  211.     @Override
  212.     public StaticTransform getStaticTransform(final AbsoluteDate date) {

  213.         // take parametric prime meridian shift into account
  214.         final double theta    = linearModel(date, primeMeridianOffsetDriver, primeMeridianDriftDriver);
  215.         final StaticTransform meridianShift = StaticTransform.of(
  216.                 date,
  217.                 new Rotation(Vector3D.PLUS_K, theta, RotationConvention.FRAME_TRANSFORM)
  218.         );

  219.         // take parametric pole shift into account
  220.         final double xpNeg     = -linearModel(date, polarOffsetXDriver, polarDriftXDriver);
  221.         final double ypNeg     = -linearModel(date, polarOffsetYDriver, polarDriftYDriver);
  222.         final StaticTransform poleShift = StaticTransform.compose(
  223.                 date,
  224.                 StaticTransform.of(
  225.                         date,
  226.                         new Rotation(Vector3D.PLUS_J, xpNeg, RotationConvention.FRAME_TRANSFORM)),
  227.                 StaticTransform.of(
  228.                         date,
  229.                         new Rotation(Vector3D.PLUS_I, ypNeg, RotationConvention.FRAME_TRANSFORM)));

  230.         return StaticTransform.compose(date, meridianShift, poleShift);

  231.     }

  232.     /** {@inheritDoc} */
  233.     @Override
  234.     public <T extends CalculusFieldElement<T>> FieldTransform<T> getTransform(final FieldAbsoluteDate<T> date) {

  235.         final T zero = date.getField().getZero();

  236.         // prime meridian shift parameters
  237.         final T theta    = linearModel(date, primeMeridianOffsetDriver, primeMeridianDriftDriver);
  238.         final T thetaDot = zero.add(primeMeridianDriftDriver.getValue());

  239.         // pole shift parameters
  240.         final T xpNeg    = linearModel(date, polarOffsetXDriver, polarDriftXDriver).negate();
  241.         final T ypNeg    = linearModel(date, polarOffsetYDriver, polarDriftYDriver).negate();
  242.         final T xpNegDot = zero.subtract(polarDriftXDriver.getValue());
  243.         final T ypNegDot = zero.subtract(polarDriftYDriver.getValue());

  244.         return getTransform(date, theta, thetaDot, xpNeg, xpNegDot, ypNeg, ypNegDot);

  245.     }

  246.     /** Get the transform with derivatives.
  247.      * @param date date of the transform
  248.      * @param freeParameters total number of free parameters in the gradient
  249.      * @param indices indices of the estimated parameters in derivatives computations
  250.      * @return computed transform with derivatives
  251.      * @since 10.2
  252.      */
  253.     public FieldTransform<Gradient> getTransform(final FieldAbsoluteDate<Gradient> date,
  254.                                                  final int freeParameters,
  255.                                                  final Map<String, Integer> indices) {

  256.         // prime meridian shift parameters
  257.         final Gradient theta    = linearModel(freeParameters, date,
  258.                                               primeMeridianOffsetDriver, primeMeridianDriftDriver,
  259.                                               indices);
  260.         final Gradient thetaDot = primeMeridianDriftDriver.getValue(freeParameters, indices);

  261.         // pole shift parameters
  262.         final Gradient xpNeg    = linearModel(freeParameters, date,
  263.                                                          polarOffsetXDriver, polarDriftXDriver, indices).negate();
  264.         final Gradient ypNeg    = linearModel(freeParameters, date,
  265.                                                          polarOffsetYDriver, polarDriftYDriver, indices).negate();
  266.         final Gradient xpNegDot = polarDriftXDriver.getValue(freeParameters, indices).negate();
  267.         final Gradient ypNegDot = polarDriftYDriver.getValue(freeParameters, indices).negate();

  268.         return getTransform(date, theta, thetaDot, xpNeg, xpNegDot, ypNeg, ypNegDot);

  269.     }

  270.     /** Get the transform with derivatives.
  271.      * @param date date of the transform
  272.      * @param theta angle of the prime meridian
  273.      * @param thetaDot angular rate of the prime meridian
  274.      * @param xpNeg opposite of the angle of the pole motion along X
  275.      * @param xpNegDot opposite of the angular rate of the pole motion along X
  276.      * @param ypNeg opposite of the angle of the pole motion along Y
  277.      * @param ypNegDot opposite of the angular rate of the pole motion along Y
  278.      * @param <T> type of the field elements
  279.      * @return computed transform with derivatives
  280.      */
  281.     private <T extends CalculusFieldElement<T>> FieldTransform<T> getTransform(final FieldAbsoluteDate<T> date,
  282.                                                                            final T theta, final T thetaDot,
  283.                                                                            final T xpNeg, final T xpNegDot,
  284.                                                                            final T ypNeg, final T ypNegDot) {

  285.         final T                zero  = date.getField().getZero();
  286.         final FieldVector3D<T> plusI = FieldVector3D.getPlusI(date.getField());
  287.         final FieldVector3D<T> plusJ = FieldVector3D.getPlusJ(date.getField());
  288.         final FieldVector3D<T> plusK = FieldVector3D.getPlusK(date.getField());

  289.         // take parametric prime meridian shift into account
  290.         final FieldTransform<T> meridianShift =
  291.                         new FieldTransform<>(date,
  292.                                              new FieldRotation<>(plusK, theta, RotationConvention.FRAME_TRANSFORM),
  293.                                              new FieldVector3D<>(zero, zero, thetaDot));

  294.         // take parametric pole shift into account
  295.         final FieldTransform<T> poleShift =
  296.                         new FieldTransform<>(date,
  297.                                       new FieldTransform<>(date,
  298.                                                            new FieldRotation<>(plusJ, xpNeg, RotationConvention.FRAME_TRANSFORM),
  299.                                                            new FieldVector3D<>(zero, xpNegDot, zero)),
  300.                                       new FieldTransform<>(date,
  301.                                                            new FieldRotation<>(plusI, ypNeg, RotationConvention.FRAME_TRANSFORM),
  302.                                                            new FieldVector3D<>(ypNegDot, zero, zero)));

  303.         return new FieldTransform<>(date, meridianShift, poleShift);

  304.     }

  305.     /** Evaluate a parametric linear model.
  306.      * @param date current date
  307.      * @param offsetDriver driver for the offset parameter
  308.      * @param driftDriver driver for the drift parameter
  309.      * @return current value of the linear model
  310.      */
  311.     private double linearModel(final AbsoluteDate date,
  312.                                final ParameterDriver offsetDriver, final ParameterDriver driftDriver) {
  313.         if (offsetDriver.getReferenceDate() == null) {
  314.             throw new OrekitException(OrekitMessages.NO_REFERENCE_DATE_FOR_PARAMETER,
  315.                                       offsetDriver.getName());
  316.         }
  317.         final double dt     = date.durationFrom(offsetDriver.getReferenceDate());
  318.         final double offset = offsetDriver.getValue();
  319.         final double drift  = driftDriver.getValue();
  320.         return dt * drift + offset;
  321.     }

  322.     /** Evaluate a parametric linear model.
  323.      * @param date current date
  324.      * @param offsetDriver driver for the offset parameter
  325.      * @param driftDriver driver for the drift parameter
  326.      * @return current value of the linear model
  327.      * @param <T> type of the filed elements
  328.      */
  329.     private <T extends CalculusFieldElement<T>> T linearModel(final FieldAbsoluteDate<T> date,
  330.                                                           final ParameterDriver offsetDriver,
  331.                                                           final ParameterDriver driftDriver) {
  332.         if (offsetDriver.getReferenceDate() == null) {
  333.             throw new OrekitException(OrekitMessages.NO_REFERENCE_DATE_FOR_PARAMETER,
  334.                                       offsetDriver.getName());
  335.         }
  336.         final T dt          = date.durationFrom(offsetDriver.getReferenceDate());
  337.         final double offset = offsetDriver.getValue();
  338.         final double drift  = driftDriver.getValue();
  339.         return dt.multiply(drift).add(offset);
  340.     }

  341.     /** Evaluate a parametric linear model.
  342.      * @param freeParameters total number of free parameters in the gradient
  343.      * @param date current date
  344.      * @param offsetDriver driver for the offset parameter
  345.      * @param driftDriver driver for the drift parameter
  346.      * @param indices indices of the estimated parameters in derivatives computations
  347.      * @return current value of the linear model
  348.      * @since 10.2
  349.      */
  350.     private Gradient linearModel(final int freeParameters, final FieldAbsoluteDate<Gradient> date,
  351.                                  final ParameterDriver offsetDriver, final ParameterDriver driftDriver,
  352.                                  final Map<String, Integer> indices) {
  353.         if (offsetDriver.getReferenceDate() == null) {
  354.             throw new OrekitException(OrekitMessages.NO_REFERENCE_DATE_FOR_PARAMETER,
  355.                                       offsetDriver.getName());
  356.         }
  357.         final Gradient dt     = date.durationFrom(offsetDriver.getReferenceDate());
  358.         final Gradient offset = offsetDriver.getValue(freeParameters, indices);
  359.         final Gradient drift  = driftDriver.getValue(freeParameters, indices);
  360.         return dt.multiply(drift).add(offset);
  361.     }

  362.     /** Replace the instance with a data transfer object for serialization.
  363.      * <p>
  364.      * This intermediate class serializes the files supported names, the ephemeris type
  365.      * and the body name.
  366.      * </p>
  367.      * @return data transfer object that will be serialized
  368.      */
  369.     private Object writeReplace() {
  370.         return new DataTransferObject(baseUT1,
  371.                                       primeMeridianOffsetDriver.getValue(),
  372.                                       primeMeridianDriftDriver.getValue(),
  373.                                       polarOffsetXDriver.getValue(),
  374.                                       polarDriftXDriver.getValue(),
  375.                                       polarOffsetYDriver.getValue(),
  376.                                       polarDriftYDriver.getValue());
  377.     }

  378.     /** Local time scale for estimated UT1. */
  379.     private class EstimatedUT1Scale extends UT1Scale {

  380.         /** Serializable UID. */
  381.         private static final long serialVersionUID = 20170922L;

  382.         /** Simple constructor.
  383.          */
  384.         EstimatedUT1Scale() {
  385.             super(baseUT1.getEOPHistory(), baseUT1.getUTCScale());
  386.         }

  387.         /** {@inheritDoc} */
  388.         @Override
  389.         public <T extends CalculusFieldElement<T>> T offsetFromTAI(final FieldAbsoluteDate<T> date) {
  390.             final T dut1 = linearModel(date, primeMeridianOffsetDriver, primeMeridianDriftDriver).divide(EARTH_ANGULAR_VELOCITY);
  391.             return baseUT1.offsetFromTAI(date).add(dut1);
  392.         }

  393.         /** {@inheritDoc} */
  394.         @Override
  395.         public double offsetFromTAI(final AbsoluteDate date) {
  396.             final double dut1 = linearModel(date, primeMeridianOffsetDriver, primeMeridianDriftDriver) / EARTH_ANGULAR_VELOCITY;
  397.             return baseUT1.offsetFromTAI(date) + dut1;
  398.         }

  399.         /** {@inheritDoc} */
  400.         @Override
  401.         public String getName() {
  402.             return baseUT1.getName() + "/estimated";
  403.         }

  404.     }

  405.     /** Internal class used only for serialization. */
  406.     private static class DataTransferObject implements Serializable {

  407.         /** Serializable UID. */
  408.         private static final long serialVersionUID = 20171124L;

  409.         /** Underlying raw UT1. */
  410.         private final UT1Scale baseUT1;

  411.         /** Current prime meridian offset. */
  412.         private final double primeMeridianOffset;

  413.         /** Current prime meridian drift. */
  414.         private final double primeMeridianDrift;

  415.         /** Current pole offset along X. */
  416.         private final double polarOffsetX;

  417.         /** Current pole drift along X. */
  418.         private final double polarDriftX;

  419.         /** Current pole offset along Y. */
  420.         private final double polarOffsetY;

  421.         /** Current pole drift along Y. */
  422.         private final double polarDriftY;

  423.         /** Simple constructor.
  424.          * @param baseUT1 underlying raw UT1
  425.          * @param primeMeridianOffset current prime meridian offset
  426.          * @param primeMeridianDrift current prime meridian drift
  427.          * @param polarOffsetX current pole offset along X
  428.          * @param polarDriftX current pole drift along X
  429.          * @param polarOffsetY current pole offset along Y
  430.          * @param polarDriftY current pole drift along Y
  431.          */
  432.         DataTransferObject(final  UT1Scale baseUT1,
  433.                            final double primeMeridianOffset, final double primeMeridianDrift,
  434.                            final double polarOffsetX,        final double polarDriftX,
  435.                            final double polarOffsetY,        final double polarDriftY) {
  436.             this.baseUT1             = baseUT1;
  437.             this.primeMeridianOffset = primeMeridianOffset;
  438.             this.primeMeridianDrift  = primeMeridianDrift;
  439.             this.polarOffsetX        = polarOffsetX;
  440.             this.polarDriftX         = polarDriftX;
  441.             this.polarOffsetY        = polarOffsetY;
  442.             this.polarDriftY         = polarDriftY;
  443.         }

  444.         /** Replace the deserialized data transfer object with a {@link EstimatedEarthFrameProvider}.
  445.          * @return replacement {@link EstimatedEarthFrameProvider}
  446.          */
  447.         private Object readResolve() {
  448.             try {
  449.                 final EstimatedEarthFrameProvider provider = new EstimatedEarthFrameProvider(baseUT1);
  450.                 provider.getPrimeMeridianOffsetDriver().setValue(primeMeridianOffset);
  451.                 provider.getPrimeMeridianDriftDriver().setValue(primeMeridianDrift);
  452.                 provider.getPolarOffsetXDriver().setValue(polarOffsetX);
  453.                 provider.getPolarDriftXDriver().setValue(polarDriftX);
  454.                 provider.getPolarOffsetYDriver().setValue(polarOffsetY);
  455.                 provider.getPolarDriftYDriver().setValue(polarDriftY);
  456.                 return provider;
  457.             } catch (OrekitException oe) {
  458.                 // this should never happen as values already come from previous drivers
  459.                 throw new OrekitInternalError(oe);
  460.             }
  461.         }

  462.     }

  463. }