AbsoluteDate.java
- /* Copyright 2002-2022 CS GROUP
- * Licensed to CS GROUP (CS) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * CS licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.orekit.time;
- import java.io.Serializable;
- import java.util.Date;
- import java.util.TimeZone;
- import org.hipparchus.util.FastMath;
- import org.hipparchus.util.MathUtils;
- import org.hipparchus.util.MathUtils.SumAndResidual;
- import org.orekit.annotation.DefaultDataContext;
- import org.orekit.data.DataContext;
- import org.orekit.errors.OrekitException;
- import org.orekit.errors.OrekitIllegalArgumentException;
- import org.orekit.errors.OrekitMessages;
- import org.orekit.utils.Constants;
- /** This class represents a specific instant in time.
- * <p>Instances of this class are considered to be absolute in the sense
- * that each one represent the occurrence of some event and can be compared
- * to other instances or located in <em>any</em> {@link TimeScale time scale}. In
- * other words the different locations of an event with respect to two different
- * time scales (say {@link TAIScale TAI} and {@link UTCScale UTC} for example) are
- * simply different perspective related to a single object. Only one
- * <code>AbsoluteDate</code> instance is needed, both representations being available
- * from this single instance by specifying the time scales as parameter when calling
- * the ad-hoc methods.</p>
- *
- * <p>Since an instance is not bound to a specific time-scale, all methods related
- * to the location of the date within some time scale require to provide the time
- * scale as an argument. It is therefore possible to define a date in one time scale
- * and to use it in another one. An example of such use is to read a date from a file
- * in UTC and write it in another file in TAI. This can be done as follows:</p>
- * <pre>
- * DateTimeComponents utcComponents = readNextDate();
- * AbsoluteDate date = new AbsoluteDate(utcComponents, TimeScalesFactory.getUTC());
- * writeNextDate(date.getComponents(TimeScalesFactory.getTAI()));
- * </pre>
- *
- * <p>Two complementary views are available:</p>
- * <ul>
- * <li><p>location view (mainly for input/output or conversions)</p>
- * <p>locations represent the coordinate of one event with respect to a
- * {@link TimeScale time scale}. The related methods are {@link
- * #AbsoluteDate(DateComponents, TimeComponents, TimeScale)}, {@link
- * #AbsoluteDate(int, int, int, int, int, double, TimeScale)}, {@link
- * #AbsoluteDate(int, int, int, TimeScale)}, {@link #AbsoluteDate(Date,
- * TimeScale)}, {@link #parseCCSDSCalendarSegmentedTimeCode(byte, byte[])},
- * {@link #toDate(TimeScale)}, {@link #toString(TimeScale) toString(timeScale)},
- * {@link #toString()}, and {@link #timeScalesOffset}.</p>
- * </li>
- * <li><p>offset view (mainly for physical computation)</p>
- * <p>offsets represent either the flow of time between two events
- * (two instances of the class) or durations. They are counted in seconds,
- * are continuous and could be measured using only a virtually perfect stopwatch.
- * The related methods are {@link #AbsoluteDate(AbsoluteDate, double)},
- * {@link #parseCCSDSUnsegmentedTimeCode(byte, byte, byte[], AbsoluteDate)},
- * {@link #parseCCSDSDaySegmentedTimeCode(byte, byte[], DateComponents)},
- * {@link #durationFrom(AbsoluteDate)}, {@link #compareTo(AbsoluteDate)}, {@link #equals(Object)}
- * and {@link #hashCode()}.</p>
- * </li>
- * </ul>
- * <p>
- * A few reference epochs which are commonly used in space systems have been defined. These
- * epochs can be used as the basis for offset computation. The supported epochs are:
- * {@link #JULIAN_EPOCH}, {@link #MODIFIED_JULIAN_EPOCH}, {@link #FIFTIES_EPOCH},
- * {@link #CCSDS_EPOCH}, {@link #GALILEO_EPOCH}, {@link #GPS_EPOCH}, {@link #QZSS_EPOCH}
- * {@link #J2000_EPOCH}, {@link #JAVA_EPOCH}.
- * There are also two factory methods {@link #createJulianEpoch(double)}
- * and {@link #createBesselianEpoch(double)} that can be used to compute other reference
- * epochs like J1900.0 or B1950.0.
- * In addition to these reference epochs, two other constants are defined for convenience:
- * {@link #PAST_INFINITY} and {@link #FUTURE_INFINITY}, which can be used either as dummy
- * dates when a date is not yet initialized, or for initialization of loops searching for
- * a min or max date.
- * </p>
- * <p>
- * Instances of the <code>AbsoluteDate</code> class are guaranteed to be immutable.
- * </p>
- * @author Luc Maisonobe
- * @author Evan Ward
- * @see TimeScale
- * @see TimeStamped
- * @see ChronologicalComparator
- */
- public class AbsoluteDate
- implements TimeStamped, TimeShiftable<AbsoluteDate>, Comparable<AbsoluteDate>, Serializable {
- /** Reference epoch for julian dates: -4712-01-01T12:00:00 Terrestrial Time.
- * <p>Both <code>java.util.Date</code> and {@link DateComponents} classes
- * follow the astronomical conventions and consider a year 0 between
- * years -1 and +1, hence this reference date lies in year -4712 and not
- * in year -4713 as can be seen in other documents or programs that obey
- * a different convention (for example the <code>convcal</code> utility).</p>
- *
- * <p>This constant uses the {@link DataContext#getDefault() default data context}.
- *
- * @see TimeScales#getJulianEpoch()
- */
- @DefaultDataContext
- public static final AbsoluteDate JULIAN_EPOCH =
- DataContext.getDefault().getTimeScales().getJulianEpoch();
- /** Reference epoch for modified julian dates: 1858-11-17T00:00:00 Terrestrial Time.
- *
- * <p>This constant uses the {@link DataContext#getDefault() default data context}.
- *
- * @see TimeScales#getModifiedJulianEpoch()
- */
- @DefaultDataContext
- public static final AbsoluteDate MODIFIED_JULIAN_EPOCH =
- DataContext.getDefault().getTimeScales().getModifiedJulianEpoch();
- /** Reference epoch for 1950 dates: 1950-01-01T00:00:00 Terrestrial Time.
- *
- * <p>This constant uses the {@link DataContext#getDefault() default data context}.
- *
- * @see TimeScales#getFiftiesEpoch()
- */
- @DefaultDataContext
- public static final AbsoluteDate FIFTIES_EPOCH =
- DataContext.getDefault().getTimeScales().getFiftiesEpoch();
- /** Reference epoch for CCSDS Time Code Format (CCSDS 301.0-B-4):
- * 1958-01-01T00:00:00 International Atomic Time (<em>not</em> UTC).
- *
- * <p>This constant uses the {@link DataContext#getDefault() default data context}.
- *
- * @see TimeScales#getCcsdsEpoch()
- */
- @DefaultDataContext
- public static final AbsoluteDate CCSDS_EPOCH =
- DataContext.getDefault().getTimeScales().getCcsdsEpoch();
- /** Reference epoch for Galileo System Time: 1999-08-22T00:00:00 GST.
- *
- * <p>This constant uses the {@link DataContext#getDefault() default data context}.
- *
- * @see TimeScales#getGalileoEpoch()
- */
- @DefaultDataContext
- public static final AbsoluteDate GALILEO_EPOCH =
- DataContext.getDefault().getTimeScales().getGalileoEpoch();
- /** Reference epoch for GPS weeks: 1980-01-06T00:00:00 GPS time.
- *
- * <p>This constant uses the {@link DataContext#getDefault() default data context}.
- *
- * @see TimeScales#getGpsEpoch()
- */
- @DefaultDataContext
- public static final AbsoluteDate GPS_EPOCH =
- DataContext.getDefault().getTimeScales().getGpsEpoch();
- /** Reference epoch for QZSS weeks: 1980-01-06T00:00:00 QZSS time.
- *
- * <p>This constant uses the {@link DataContext#getDefault() default data context}.
- *
- * @see TimeScales#getQzssEpoch()
- */
- @DefaultDataContext
- public static final AbsoluteDate QZSS_EPOCH =
- DataContext.getDefault().getTimeScales().getQzssEpoch();
- /** Reference epoch for IRNSS weeks: 1999-08-22T00:00:00 IRNSS time.
- *
- * <p>This constant uses the {@link DataContext#getDefault() default data context}.
- *
- * @see TimeScales#getIrnssEpoch()
- */
- @DefaultDataContext
- public static final AbsoluteDate IRNSS_EPOCH =
- DataContext.getDefault().getTimeScales().getIrnssEpoch();
- /** Reference epoch for BeiDou weeks: 2006-01-01T00:00:00 UTC.
- *
- * <p>This constant uses the {@link DataContext#getDefault() default data context}.
- *
- * @see TimeScales#getBeidouEpoch()
- */
- @DefaultDataContext
- public static final AbsoluteDate BEIDOU_EPOCH =
- DataContext.getDefault().getTimeScales().getBeidouEpoch();
- /** Reference epoch for GLONASS four-year interval number: 1996-01-01T00:00:00 GLONASS time.
- * <p>By convention, TGLONASS = UTC + 3 hours.</p>
- *
- * <p>This constant uses the {@link DataContext#getDefault() default data context}.
- *
- * @see TimeScales#getGlonassEpoch()
- */
- @DefaultDataContext
- public static final AbsoluteDate GLONASS_EPOCH =
- DataContext.getDefault().getTimeScales().getGlonassEpoch();
- /** J2000.0 Reference epoch: 2000-01-01T12:00:00 Terrestrial Time (<em>not</em> UTC).
- * @see #createJulianEpoch(double)
- * @see #createBesselianEpoch(double)
- *
- * <p>This constant uses the {@link DataContext#getDefault() default data context}.
- *
- * @see TimeScales#getJ2000Epoch()
- */
- @DefaultDataContext
- public static final AbsoluteDate J2000_EPOCH = // TODO
- DataContext.getDefault().getTimeScales().getJ2000Epoch();
- /** Java Reference epoch: 1970-01-01T00:00:00 Universal Time Coordinate.
- * <p>
- * Between 1968-02-01 and 1972-01-01, UTC-TAI = 4.213 170 0s + (MJD - 39 126) x 0.002 592s.
- * As on 1970-01-01 MJD = 40587, UTC-TAI = 8.000082s
- * </p>
- *
- * <p>This constant uses the {@link DataContext#getDefault() default data context}.
- *
- * @see TimeScales#getJavaEpoch()
- */
- @DefaultDataContext
- public static final AbsoluteDate JAVA_EPOCH =
- DataContext.getDefault().getTimeScales().getJavaEpoch();
- /**
- * An arbitrary finite date. Uses when a non-null date is needed but its value doesn't
- * matter.
- */
- public static final AbsoluteDate ARBITRARY_EPOCH = new AbsoluteDate(0, 0);
- /** Dummy date at infinity in the past direction.
- * @see TimeScales#getPastInfinity()
- */
- public static final AbsoluteDate PAST_INFINITY = ARBITRARY_EPOCH.shiftedBy(Double.NEGATIVE_INFINITY);
- /** Dummy date at infinity in the future direction.
- * @see TimeScales#getFutureInfinity()
- */
- public static final AbsoluteDate FUTURE_INFINITY = ARBITRARY_EPOCH.shiftedBy(Double.POSITIVE_INFINITY);
- /** Serializable UID. */
- private static final long serialVersionUID = 617061803741806846L;
- /** Reference epoch in seconds from 2000-01-01T12:00:00 TAI.
- * <p>Beware, it is not {@link #J2000_EPOCH} since it is in TAI and not in TT.</p> */
- private final long epoch;
- /** Offset from the reference epoch in seconds. */
- private final double offset;
- /** Create an instance with a default value ({@link #J2000_EPOCH}).
- *
- * <p>This constructor uses the {@link DataContext#getDefault() default data context}.
- *
- * @see #AbsoluteDate(DateTimeComponents, TimeScale)
- */
- @DefaultDataContext
- public AbsoluteDate() {
- epoch = J2000_EPOCH.epoch;
- offset = J2000_EPOCH.offset;
- }
- /** Build an instance from a location (parsed from a string) in a {@link TimeScale time scale}.
- * <p>
- * The supported formats for location are mainly the ones defined in ISO-8601 standard,
- * the exact subset is explained in {@link DateTimeComponents#parseDateTime(String)},
- * {@link DateComponents#parseDate(String)} and {@link TimeComponents#parseTime(String)}.
- * </p>
- * <p>
- * As CCSDS ASCII calendar segmented time code is a trimmed down version of ISO-8601,
- * it is also supported by this constructor.
- * </p>
- * @param location location in the time scale, must be in a supported format
- * @param timeScale time scale
- * @exception IllegalArgumentException if location string is not in a supported format
- */
- public AbsoluteDate(final String location, final TimeScale timeScale) {
- this(DateTimeComponents.parseDateTime(location), timeScale);
- }
- /** Build an instance from a location in a {@link TimeScale time scale}.
- * @param location location in the time scale
- * @param timeScale time scale
- */
- public AbsoluteDate(final DateTimeComponents location, final TimeScale timeScale) {
- this(location.getDate(), location.getTime(), timeScale);
- }
- /** Build an instance from a location in a {@link TimeScale time scale}.
- * @param date date location in the time scale
- * @param time time location in the time scale
- * @param timeScale time scale
- */
- public AbsoluteDate(final DateComponents date, final TimeComponents time,
- final TimeScale timeScale) {
- final double seconds = time.getSecond();
- final double tsOffset = timeScale.offsetToTAI(date, time);
- // Use 2Sum for high precision.
- final SumAndResidual sumAndResidual = MathUtils.twoSum(seconds, tsOffset);
- final long dl = (long) FastMath.floor(sumAndResidual.getSum());
- final double regularOffset = (sumAndResidual.getSum() - dl) + sumAndResidual.getResidual();
- if (regularOffset >= 0) {
- // regular case, the offset is between 0.0 and 1.0
- offset = regularOffset;
- epoch = 60l * ((date.getJ2000Day() * 24l + time.getHour()) * 60l +
- time.getMinute() - time.getMinutesFromUTC() - 720l) + dl;
- } else {
- // very rare case, the offset is just before a whole second
- // we will loose some bits of accuracy when adding 1 second
- // but this will ensure the offset remains in the [0.0; 1.0] interval
- offset = 1.0 + regularOffset;
- epoch = 60l * ((date.getJ2000Day() * 24l + time.getHour()) * 60l +
- time.getMinute() - time.getMinutesFromUTC() - 720l) + dl - 1;
- }
- }
- /** Build an instance from a location in a {@link TimeScale time scale}.
- * @param year year number (may be 0 or negative for BC years)
- * @param month month number from 1 to 12
- * @param day day number from 1 to 31
- * @param hour hour number from 0 to 23
- * @param minute minute number from 0 to 59
- * @param second second number from 0.0 to 60.0 (excluded)
- * @param timeScale time scale
- * @exception IllegalArgumentException if inconsistent arguments
- * are given (parameters out of range)
- */
- public AbsoluteDate(final int year, final int month, final int day,
- final int hour, final int minute, final double second,
- final TimeScale timeScale) throws IllegalArgumentException {
- this(new DateComponents(year, month, day), new TimeComponents(hour, minute, second), timeScale);
- }
- /** Build an instance from a location in a {@link TimeScale time scale}.
- * @param year year number (may be 0 or negative for BC years)
- * @param month month enumerate
- * @param day day number from 1 to 31
- * @param hour hour number from 0 to 23
- * @param minute minute number from 0 to 59
- * @param second second number from 0.0 to 60.0 (excluded)
- * @param timeScale time scale
- * @exception IllegalArgumentException if inconsistent arguments
- * are given (parameters out of range)
- */
- public AbsoluteDate(final int year, final Month month, final int day,
- final int hour, final int minute, final double second,
- final TimeScale timeScale) throws IllegalArgumentException {
- this(new DateComponents(year, month, day), new TimeComponents(hour, minute, second), timeScale);
- }
- /** Build an instance from a location in a {@link TimeScale time scale}.
- * <p>The hour is set to 00:00:00.000.</p>
- * @param date date location in the time scale
- * @param timeScale time scale
- * @exception IllegalArgumentException if inconsistent arguments
- * are given (parameters out of range)
- */
- public AbsoluteDate(final DateComponents date, final TimeScale timeScale)
- throws IllegalArgumentException {
- this(date, TimeComponents.H00, timeScale);
- }
- /** Build an instance from a location in a {@link TimeScale time scale}.
- * <p>The hour is set to 00:00:00.000.</p>
- * @param year year number (may be 0 or negative for BC years)
- * @param month month number from 1 to 12
- * @param day day number from 1 to 31
- * @param timeScale time scale
- * @exception IllegalArgumentException if inconsistent arguments
- * are given (parameters out of range)
- */
- public AbsoluteDate(final int year, final int month, final int day,
- final TimeScale timeScale) throws IllegalArgumentException {
- this(new DateComponents(year, month, day), TimeComponents.H00, timeScale);
- }
- /** Build an instance from a location in a {@link TimeScale time scale}.
- * <p>The hour is set to 00:00:00.000.</p>
- * @param year year number (may be 0 or negative for BC years)
- * @param month month enumerate
- * @param day day number from 1 to 31
- * @param timeScale time scale
- * @exception IllegalArgumentException if inconsistent arguments
- * are given (parameters out of range)
- */
- public AbsoluteDate(final int year, final Month month, final int day,
- final TimeScale timeScale) throws IllegalArgumentException {
- this(new DateComponents(year, month, day), TimeComponents.H00, timeScale);
- }
- /** Build an instance from a location in a {@link TimeScale time scale}.
- * @param location location in the time scale
- * @param timeScale time scale
- */
- public AbsoluteDate(final Date location, final TimeScale timeScale) {
- this(new DateComponents(DateComponents.JAVA_EPOCH,
- (int) (location.getTime() / 86400000l)),
- millisToTimeComponents((int) (location.getTime() % 86400000l)),
- timeScale);
- }
- /** Build an instance from an elapsed duration since to another instant.
- * <p>It is important to note that the elapsed duration is <em>not</em>
- * the difference between two readings on a time scale. As an example,
- * the duration between the two instants leading to the readings
- * 2005-12-31T23:59:59 and 2006-01-01T00:00:00 in the {@link UTCScale UTC}
- * time scale is <em>not</em> 1 second, but a stop watch would have measured
- * an elapsed duration of 2 seconds between these two instances because a leap
- * second was introduced at the end of 2005 in this time scale.</p>
- * <p>This constructor is the reverse of the {@link #durationFrom(AbsoluteDate)}
- * method.</p>
- * @param since start instant of the measured duration
- * @param elapsedDuration physically elapsed duration from the <code>since</code>
- * instant, as measured in a regular time scale
- * @see #durationFrom(AbsoluteDate)
- */
- public AbsoluteDate(final AbsoluteDate since, final double elapsedDuration) {
- // Use 2Sum for high precision.
- final SumAndResidual sumAndResidual = MathUtils.twoSum(since.offset, elapsedDuration);
- if (Double.isInfinite(sumAndResidual.getSum())) {
- offset = sumAndResidual.getSum();
- epoch = (sumAndResidual.getSum() < 0) ? Long.MIN_VALUE : Long.MAX_VALUE;
- } else {
- final long dl = (long) FastMath.floor(sumAndResidual.getSum());
- final double regularOffset = (sumAndResidual.getSum() - dl) + sumAndResidual.getResidual();
- if (regularOffset >= 0) {
- // regular case, the offset is between 0.0 and 1.0
- offset = regularOffset;
- epoch = since.epoch + dl;
- } else {
- // very rare case, the offset is just before a whole second
- // we will loose some bits of accuracy when adding 1 second
- // but this will ensure the offset remains in the [0.0; 1.0] interval
- offset = 1.0 + regularOffset;
- epoch = since.epoch + dl - 1;
- }
- }
- }
- /** Build an instance from an apparent clock offset with respect to another
- * instant <em>in the perspective of a specific {@link TimeScale time scale}</em>.
- * <p>It is important to note that the apparent clock offset <em>is</em> the
- * difference between two readings on a time scale and <em>not</em> an elapsed
- * duration. As an example, the apparent clock offset between the two instants
- * leading to the readings 2005-12-31T23:59:59 and 2006-01-01T00:00:00 in the
- * {@link UTCScale UTC} time scale is 1 second, but the elapsed duration is 2
- * seconds because a leap second has been introduced at the end of 2005 in this
- * time scale.</p>
- * <p>This constructor is the reverse of the {@link #offsetFrom(AbsoluteDate,
- * TimeScale)} method.</p>
- * @param reference reference instant
- * @param apparentOffset apparent clock offset from the reference instant
- * (difference between two readings in the specified time scale)
- * @param timeScale time scale with respect to which the offset is defined
- * @see #offsetFrom(AbsoluteDate, TimeScale)
- */
- public AbsoluteDate(final AbsoluteDate reference, final double apparentOffset,
- final TimeScale timeScale) {
- this(new DateTimeComponents(reference.getComponents(timeScale), apparentOffset),
- timeScale);
- }
- /** Build a date from its internal components.
- * <p>
- * This method is reserved for internal used (for example by {@link FieldAbsoluteDate}).
- * </p>
- * @param epoch reference epoch in seconds from 2000-01-01T12:00:00 TAI.
- * (beware, it is not {@link #J2000_EPOCH} since it is in TAI and not in TT)
- * @param offset offset from the reference epoch in seconds (must be
- * between 0.0 included and 1.0 excluded)
- * @since 9.0
- */
- AbsoluteDate(final long epoch, final double offset) {
- this.epoch = epoch;
- this.offset = offset;
- }
- /** Extract time components from a number of milliseconds within the day.
- * @param millisInDay number of milliseconds within the day
- * @return time components
- */
- private static TimeComponents millisToTimeComponents(final int millisInDay) {
- return new TimeComponents(millisInDay / 1000, 0.001 * (millisInDay % 1000));
- }
- /** Get the reference epoch in seconds from 2000-01-01T12:00:00 TAI.
- * <p>
- * This method is reserved for internal used (for example by {@link FieldAbsoluteDate}).
- * </p>
- * <p>
- * Beware, it is not {@link #J2000_EPOCH} since it is in TAI and not in TT.
- * </p>
- * @return reference epoch in seconds from 2000-01-01T12:00:00 TAI
- * @since 9.0
- */
- long getEpoch() {
- return epoch;
- }
- /** Get the offset from the reference epoch in seconds.
- * <p>
- * This method is reserved for internal used (for example by {@link FieldAbsoluteDate}).
- * </p>
- * @return offset from the reference epoch in seconds
- * @since 9.0
- */
- double getOffset() {
- return offset;
- }
- /** Build an instance from a CCSDS Unsegmented Time Code (CUC).
- * <p>
- * CCSDS Unsegmented Time Code is defined in the blue book:
- * CCSDS Time Code Format (CCSDS 301.0-B-4) published in November 2010
- * </p>
- * <p>
- * If the date to be parsed is formatted using version 3 of the standard
- * (CCSDS 301.0-B-3 published in 2002) or if the extension of the preamble
- * field introduced in version 4 of the standard is not used, then the
- * {@code preambleField2} parameter can be set to 0.
- * </p>
- *
- * <p>This method uses the {@link DataContext#getDefault() default data context} if
- * the CCSDS epoch is used.
- *
- * @param preambleField1 first byte of the field specifying the format, often
- * not transmitted in data interfaces, as it is constant for a given data interface
- * @param preambleField2 second byte of the field specifying the format
- * (added in revision 4 of the CCSDS standard in 2010), often not transmitted in data
- * interfaces, as it is constant for a given data interface (value ignored if presence
- * not signaled in {@code preambleField1})
- * @param timeField byte array containing the time code
- * @param agencyDefinedEpoch reference epoch, ignored if the preamble field
- * specifies the {@link #CCSDS_EPOCH CCSDS reference epoch} is used (and hence
- * may be null in this case)
- * @return an instance corresponding to the specified date
- * @see #parseCCSDSUnsegmentedTimeCode(byte, byte, byte[], AbsoluteDate, AbsoluteDate)
- */
- @DefaultDataContext
- public static AbsoluteDate parseCCSDSUnsegmentedTimeCode(final byte preambleField1,
- final byte preambleField2,
- final byte[] timeField,
- final AbsoluteDate agencyDefinedEpoch) {
- return parseCCSDSUnsegmentedTimeCode(preambleField1, preambleField2, timeField,
- agencyDefinedEpoch,
- DataContext.getDefault().getTimeScales().getCcsdsEpoch());
- }
- /**
- * Build an instance from a CCSDS Unsegmented Time Code (CUC).
- * <p>
- * CCSDS Unsegmented Time Code is defined in the blue book: CCSDS Time Code Format
- * (CCSDS 301.0-B-4) published in November 2010
- * </p>
- * <p>
- * If the date to be parsed is formatted using version 3 of the standard (CCSDS
- * 301.0-B-3 published in 2002) or if the extension of the preamble field introduced
- * in version 4 of the standard is not used, then the {@code preambleField2} parameter
- * can be set to 0.
- * </p>
- *
- * @param preambleField1 first byte of the field specifying the format, often not
- * transmitted in data interfaces, as it is constant for a
- * given data interface
- * @param preambleField2 second byte of the field specifying the format (added in
- * revision 4 of the CCSDS standard in 2010), often not
- * transmitted in data interfaces, as it is constant for a
- * given data interface (value ignored if presence not
- * signaled in {@code preambleField1})
- * @param timeField byte array containing the time code
- * @param agencyDefinedEpoch reference epoch, ignored if the preamble field specifies
- * the {@link #CCSDS_EPOCH CCSDS reference epoch} is used
- * (and hence may be null in this case)
- * @param ccsdsEpoch reference epoch, ignored if the preamble field specifies
- * the agency epoch is used.
- * @return an instance corresponding to the specified date
- * @since 10.1
- */
- public static AbsoluteDate parseCCSDSUnsegmentedTimeCode(
- final byte preambleField1,
- final byte preambleField2,
- final byte[] timeField,
- final AbsoluteDate agencyDefinedEpoch,
- final AbsoluteDate ccsdsEpoch) {
- // time code identification and reference epoch
- final AbsoluteDate epoch;
- switch (preambleField1 & 0x70) {
- case 0x10:
- // the reference epoch is CCSDS epoch 1958-01-01T00:00:00 TAI
- epoch = ccsdsEpoch;
- break;
- case 0x20:
- // the reference epoch is agency defined
- if (agencyDefinedEpoch == null) {
- throw new OrekitException(OrekitMessages.CCSDS_DATE_MISSING_AGENCY_EPOCH);
- }
- epoch = agencyDefinedEpoch;
- break;
- default :
- throw new OrekitException(OrekitMessages.CCSDS_DATE_INVALID_PREAMBLE_FIELD,
- formatByte(preambleField1));
- }
- // time field lengths
- int coarseTimeLength = 1 + ((preambleField1 & 0x0C) >>> 2);
- int fineTimeLength = preambleField1 & 0x03;
- if ((preambleField1 & 0x80) != 0x0) {
- // there is an additional octet in preamble field
- coarseTimeLength += (preambleField2 & 0x60) >>> 5;
- fineTimeLength += (preambleField2 & 0x1C) >>> 2;
- }
- if (timeField.length != coarseTimeLength + fineTimeLength) {
- throw new OrekitException(OrekitMessages.CCSDS_DATE_INVALID_LENGTH_TIME_FIELD,
- timeField.length, coarseTimeLength + fineTimeLength);
- }
- double seconds = 0;
- for (int i = 0; i < coarseTimeLength; ++i) {
- seconds = seconds * 256 + toUnsigned(timeField[i]);
- }
- double subseconds = 0;
- for (int i = timeField.length - 1; i >= coarseTimeLength; --i) {
- subseconds = (subseconds + toUnsigned(timeField[i])) / 256;
- }
- return new AbsoluteDate(epoch, seconds).shiftedBy(subseconds);
- }
- /** Build an instance from a CCSDS Day Segmented Time Code (CDS).
- * <p>
- * CCSDS Day Segmented Time Code is defined in the blue book:
- * CCSDS Time Code Format (CCSDS 301.0-B-4) published in November 2010
- * </p>
- *
- * <p>This method uses the {@link DataContext#getDefault() default data context}.
- *
- * @param preambleField field specifying the format, often not transmitted in
- * data interfaces, as it is constant for a given data interface
- * @param timeField byte array containing the time code
- * @param agencyDefinedEpoch reference epoch, ignored if the preamble field
- * specifies the {@link #CCSDS_EPOCH CCSDS reference epoch} is used (and hence
- * may be null in this case)
- * @return an instance corresponding to the specified date
- * @see #parseCCSDSDaySegmentedTimeCode(byte, byte[], DateComponents, TimeScale)
- */
- @DefaultDataContext
- public static AbsoluteDate parseCCSDSDaySegmentedTimeCode(final byte preambleField, final byte[] timeField,
- final DateComponents agencyDefinedEpoch) {
- return parseCCSDSDaySegmentedTimeCode(preambleField, timeField,
- agencyDefinedEpoch, DataContext.getDefault().getTimeScales().getUTC());
- }
- /** Build an instance from a CCSDS Day Segmented Time Code (CDS).
- * <p>
- * CCSDS Day Segmented Time Code is defined in the blue book:
- * CCSDS Time Code Format (CCSDS 301.0-B-4) published in November 2010
- * </p>
- * @param preambleField field specifying the format, often not transmitted in
- * data interfaces, as it is constant for a given data interface
- * @param timeField byte array containing the time code
- * @param agencyDefinedEpoch reference epoch, ignored if the preamble field
- * specifies the {@link #CCSDS_EPOCH CCSDS reference epoch} is used (and hence
- * may be null in this case)
- * @param utc time scale used to compute date and time components.
- * @return an instance corresponding to the specified date
- * @since 10.1
- */
- public static AbsoluteDate parseCCSDSDaySegmentedTimeCode(
- final byte preambleField,
- final byte[] timeField,
- final DateComponents agencyDefinedEpoch,
- final TimeScale utc) {
- // time code identification
- if ((preambleField & 0xF0) != 0x40) {
- throw new OrekitException(OrekitMessages.CCSDS_DATE_INVALID_PREAMBLE_FIELD,
- formatByte(preambleField));
- }
- // reference epoch
- final DateComponents epoch;
- if ((preambleField & 0x08) == 0x00) {
- // the reference epoch is CCSDS epoch 1958-01-01T00:00:00 TAI
- epoch = DateComponents.CCSDS_EPOCH;
- } else {
- // the reference epoch is agency defined
- if (agencyDefinedEpoch == null) {
- throw new OrekitException(OrekitMessages.CCSDS_DATE_MISSING_AGENCY_EPOCH);
- }
- epoch = agencyDefinedEpoch;
- }
- // time field lengths
- final int daySegmentLength = ((preambleField & 0x04) == 0x0) ? 2 : 3;
- final int subMillisecondLength = (preambleField & 0x03) << 1;
- if (subMillisecondLength == 6) {
- throw new OrekitException(OrekitMessages.CCSDS_DATE_INVALID_PREAMBLE_FIELD,
- formatByte(preambleField));
- }
- if (timeField.length != daySegmentLength + 4 + subMillisecondLength) {
- throw new OrekitException(OrekitMessages.CCSDS_DATE_INVALID_LENGTH_TIME_FIELD,
- timeField.length, daySegmentLength + 4 + subMillisecondLength);
- }
- int i = 0;
- int day = 0;
- while (i < daySegmentLength) {
- day = day * 256 + toUnsigned(timeField[i++]);
- }
- long milliInDay = 0l;
- while (i < daySegmentLength + 4) {
- milliInDay = milliInDay * 256 + toUnsigned(timeField[i++]);
- }
- final int milli = (int) (milliInDay % 1000l);
- final int seconds = (int) ((milliInDay - milli) / 1000l);
- double subMilli = 0;
- double divisor = 1;
- while (i < timeField.length) {
- subMilli = subMilli * 256 + toUnsigned(timeField[i++]);
- divisor *= 1000;
- }
- final DateComponents date = new DateComponents(epoch, day);
- final TimeComponents time = new TimeComponents(seconds);
- return new AbsoluteDate(date, time, utc).shiftedBy(milli * 1.0e-3 + subMilli / divisor);
- }
- /** Build an instance from a CCSDS Calendar Segmented Time Code (CCS).
- * <p>
- * CCSDS Calendar Segmented Time Code is defined in the blue book:
- * CCSDS Time Code Format (CCSDS 301.0-B-4) published in November 2010
- * </p>
- *
- * <p>This method uses the {@link DataContext#getDefault() default data context}.
- *
- * @param preambleField field specifying the format, often not transmitted in
- * data interfaces, as it is constant for a given data interface
- * @param timeField byte array containing the time code
- * @return an instance corresponding to the specified date
- * @see #parseCCSDSCalendarSegmentedTimeCode(byte, byte[], TimeScale)
- */
- @DefaultDataContext
- public static AbsoluteDate parseCCSDSCalendarSegmentedTimeCode(final byte preambleField, final byte[] timeField) {
- return parseCCSDSCalendarSegmentedTimeCode(preambleField, timeField,
- DataContext.getDefault().getTimeScales().getUTC());
- }
- /** Build an instance from a CCSDS Calendar Segmented Time Code (CCS).
- * <p>
- * CCSDS Calendar Segmented Time Code is defined in the blue book:
- * CCSDS Time Code Format (CCSDS 301.0-B-4) published in November 2010
- * </p>
- * @param preambleField field specifying the format, often not transmitted in
- * data interfaces, as it is constant for a given data interface
- * @param timeField byte array containing the time code
- * @param utc time scale used to compute date and time components.
- * @return an instance corresponding to the specified date
- * @since 10.1
- */
- public static AbsoluteDate parseCCSDSCalendarSegmentedTimeCode(
- final byte preambleField,
- final byte[] timeField,
- final TimeScale utc) {
- // time code identification
- if ((preambleField & 0xF0) != 0x50) {
- throw new OrekitException(OrekitMessages.CCSDS_DATE_INVALID_PREAMBLE_FIELD,
- formatByte(preambleField));
- }
- // time field length
- final int length = 7 + (preambleField & 0x07);
- if (length == 14) {
- throw new OrekitException(OrekitMessages.CCSDS_DATE_INVALID_PREAMBLE_FIELD,
- formatByte(preambleField));
- }
- if (timeField.length != length) {
- throw new OrekitException(OrekitMessages.CCSDS_DATE_INVALID_LENGTH_TIME_FIELD,
- timeField.length, length);
- }
- // date part in the first four bytes
- final DateComponents date;
- if ((preambleField & 0x08) == 0x00) {
- // month of year and day of month variation
- date = new DateComponents(toUnsigned(timeField[0]) * 256 + toUnsigned(timeField[1]),
- toUnsigned(timeField[2]),
- toUnsigned(timeField[3]));
- } else {
- // day of year variation
- date = new DateComponents(toUnsigned(timeField[0]) * 256 + toUnsigned(timeField[1]),
- toUnsigned(timeField[2]) * 256 + toUnsigned(timeField[3]));
- }
- // time part from bytes 5 to last (between 7 and 13 depending on precision)
- final TimeComponents time = new TimeComponents(toUnsigned(timeField[4]),
- toUnsigned(timeField[5]),
- toUnsigned(timeField[6]));
- double subSecond = 0;
- double divisor = 1;
- for (int i = 7; i < length; ++i) {
- subSecond = subSecond * 100 + toUnsigned(timeField[i]);
- divisor *= 100;
- }
- return new AbsoluteDate(date, time, utc).shiftedBy(subSecond / divisor);
- }
- /** Decode a signed byte as an unsigned int value.
- * @param b byte to decode
- * @return an unsigned int value
- */
- private static int toUnsigned(final byte b) {
- final int i = (int) b;
- return (i < 0) ? 256 + i : i;
- }
- /** Format a byte as an hex string for error messages.
- * @param data byte to format
- * @return a formatted string
- */
- private static String formatByte(final byte data) {
- return "0x" + Integer.toHexString(data).toUpperCase();
- }
- /** Build an instance corresponding to a Julian Day date.
- * @param jd Julian day
- * @param secondsSinceNoon seconds in the Julian day
- * (BEWARE, Julian days start at noon, so 0.0 is noon)
- * @param timeScale time scale in which the seconds in day are defined
- * @return a new instant
- */
- public static AbsoluteDate createJDDate(final int jd, final double secondsSinceNoon,
- final TimeScale timeScale) {
- return new AbsoluteDate(new DateComponents(DateComponents.JULIAN_EPOCH, jd),
- TimeComponents.H12, timeScale).shiftedBy(secondsSinceNoon);
- }
- /** Build an instance corresponding to a Modified Julian Day date.
- * @param mjd modified Julian day
- * @param secondsInDay seconds in the day
- * @param timeScale time scale in which the seconds in day are defined
- * @return a new instant
- * @exception OrekitIllegalArgumentException if seconds number is out of range
- */
- public static AbsoluteDate createMJDDate(final int mjd, final double secondsInDay,
- final TimeScale timeScale)
- throws OrekitIllegalArgumentException {
- final DateComponents dc = new DateComponents(DateComponents.MODIFIED_JULIAN_EPOCH, mjd);
- final TimeComponents tc;
- if (secondsInDay >= Constants.JULIAN_DAY) {
- // check we are really allowed to use this number of seconds
- final int secondsA = 86399; // 23:59:59, i.e. 59s in the last minute of the day
- final double secondsB = secondsInDay - secondsA;
- final TimeComponents safeTC = new TimeComponents(secondsA, 0.0);
- final AbsoluteDate safeDate = new AbsoluteDate(dc, safeTC, timeScale);
- if (timeScale.minuteDuration(safeDate) > 59 + secondsB) {
- // we are within the last minute of the day, the number of seconds is OK
- return safeDate.shiftedBy(secondsB);
- } else {
- // let TimeComponents trigger an OrekitIllegalArgumentException
- // for the wrong number of seconds
- tc = new TimeComponents(secondsA, secondsB);
- }
- } else {
- tc = new TimeComponents(secondsInDay);
- }
- // create the date
- return new AbsoluteDate(dc, tc, timeScale);
- }
- /** Build an instance corresponding to a Julian Epoch (JE).
- * <p>According to Lieske paper: <a
- * href="http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?1979A%26A....73..282L&defaultprint=YES&filetype=.pdf.">
- * Precession Matrix Based on IAU (1976) System of Astronomical Constants</a>, Astronomy and Astrophysics,
- * vol. 73, no. 3, Mar. 1979, p. 282-284, Julian Epoch is related to Julian Ephemeris Date as:</p>
- * <pre>
- * JE = 2000.0 + (JED - 2451545.0) / 365.25
- * </pre>
- * <p>
- * This method reverts the formula above and computes an {@code AbsoluteDate} from the Julian Epoch.
- * </p>
- *
- * <p>This method uses the {@link DataContext#getDefault() default data context}.
- *
- * @param julianEpoch Julian epoch, like 2000.0 for defining the classical reference J2000.0
- * @return a new instant
- * @see #J2000_EPOCH
- * @see #createBesselianEpoch(double)
- * @see TimeScales#createJulianEpoch(double)
- */
- @DefaultDataContext
- public static AbsoluteDate createJulianEpoch(final double julianEpoch) {
- return DataContext.getDefault().getTimeScales().createJulianEpoch(julianEpoch);
- }
- /** Build an instance corresponding to a Besselian Epoch (BE).
- * <p>According to Lieske paper: <a
- * href="http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?1979A%26A....73..282L&defaultprint=YES&filetype=.pdf.">
- * Precession Matrix Based on IAU (1976) System of Astronomical Constants</a>, Astronomy and Astrophysics,
- * vol. 73, no. 3, Mar. 1979, p. 282-284, Besselian Epoch is related to Julian Ephemeris Date as:</p>
- * <pre>
- * BE = 1900.0 + (JED - 2415020.31352) / 365.242198781
- * </pre>
- * <p>
- * This method reverts the formula above and computes an {@code AbsoluteDate} from the Besselian Epoch.
- * </p>
- *
- * <p>This method uses the {@link DataContext#getDefault() default data context}.
- *
- * @param besselianEpoch Besselian epoch, like 1950 for defining the classical reference B1950.0
- * @return a new instant
- * @see #createJulianEpoch(double)
- * @see TimeScales#createBesselianEpoch(double)
- */
- @DefaultDataContext
- public static AbsoluteDate createBesselianEpoch(final double besselianEpoch) {
- return DataContext.getDefault().getTimeScales()
- .createBesselianEpoch(besselianEpoch);
- }
- /** Get a time-shifted date.
- * <p>
- * Calling this method is equivalent to call <code>new AbsoluteDate(this, dt)</code>.
- * </p>
- * @param dt time shift in seconds
- * @return a new date, shifted with respect to instance (which is immutable)
- * @see org.orekit.utils.PVCoordinates#shiftedBy(double)
- * @see org.orekit.attitudes.Attitude#shiftedBy(double)
- * @see org.orekit.orbits.Orbit#shiftedBy(double)
- * @see org.orekit.propagation.SpacecraftState#shiftedBy(double)
- */
- public AbsoluteDate shiftedBy(final double dt) {
- return new AbsoluteDate(this, dt);
- }
- /** Compute the physically elapsed duration between two instants.
- * <p>The returned duration is the number of seconds physically
- * elapsed between the two instants, measured in a regular time
- * scale with respect to surface of the Earth (i.e either the {@link
- * TAIScale TAI scale}, the {@link TTScale TT scale} or the {@link
- * GPSScale GPS scale}). It is the only method that gives a
- * duration with a physical meaning.</p>
- * <p>This method gives the same result (with less computation)
- * as calling {@link #offsetFrom(AbsoluteDate, TimeScale)}
- * with a second argument set to one of the regular scales cited
- * above.</p>
- * <p>This method is the reverse of the {@link #AbsoluteDate(AbsoluteDate,
- * double)} constructor.</p>
- * @param instant instant to subtract from the instance
- * @return offset in seconds between the two instants (positive
- * if the instance is posterior to the argument)
- * @see #offsetFrom(AbsoluteDate, TimeScale)
- * @see #AbsoluteDate(AbsoluteDate, double)
- */
- public double durationFrom(final AbsoluteDate instant) {
- return (epoch - instant.epoch) + (offset - instant.offset);
- }
- /** Compute the apparent clock offset between two instant <em>in the
- * perspective of a specific {@link TimeScale time scale}</em>.
- * <p>The offset is the number of seconds counted in the given
- * time scale between the locations of the two instants, with
- * all time scale irregularities removed (i.e. considering all
- * days are exactly 86400 seconds long). This method will give
- * a result that may not have a physical meaning if the time scale
- * is irregular. For example since a leap second was introduced at
- * the end of 2005, the apparent offset between 2005-12-31T23:59:59
- * and 2006-01-01T00:00:00 is 1 second, but the physical duration
- * of the corresponding time interval as returned by the {@link
- * #durationFrom(AbsoluteDate)} method is 2 seconds.</p>
- * <p>This method is the reverse of the {@link #AbsoluteDate(AbsoluteDate,
- * double, TimeScale)} constructor.</p>
- * @param instant instant to subtract from the instance
- * @param timeScale time scale with respect to which the offset should
- * be computed
- * @return apparent clock offset in seconds between the two instants
- * (positive if the instance is posterior to the argument)
- * @see #durationFrom(AbsoluteDate)
- * @see #AbsoluteDate(AbsoluteDate, double, TimeScale)
- */
- public double offsetFrom(final AbsoluteDate instant, final TimeScale timeScale) {
- final long elapsedDurationA = epoch - instant.epoch;
- final double elapsedDurationB = (offset + timeScale.offsetFromTAI(this)) -
- (instant.offset + timeScale.offsetFromTAI(instant));
- return elapsedDurationA + elapsedDurationB;
- }
- /** Compute the offset between two time scales at the current instant.
- * <p>The offset is defined as <i>l₁-l₂</i>
- * where <i>l₁</i> is the location of the instant in
- * the <code>scale1</code> time scale and <i>l₂</i> is the
- * location of the instant in the <code>scale2</code> time scale.</p>
- * @param scale1 first time scale
- * @param scale2 second time scale
- * @return offset in seconds between the two time scales at the
- * current instant
- */
- public double timeScalesOffset(final TimeScale scale1, final TimeScale scale2) {
- return scale1.offsetFromTAI(this) - scale2.offsetFromTAI(this);
- }
- /** Convert the instance to a Java {@link java.util.Date Date}.
- * <p>Conversion to the Date class induces a loss of precision because
- * the Date class does not provide sub-millisecond information. Java Dates
- * are considered to be locations in some times scales.</p>
- * @param timeScale time scale to use
- * @return a {@link java.util.Date Date} instance representing the location
- * of the instant in the time scale
- */
- public Date toDate(final TimeScale timeScale) {
- final double time = epoch + (offset + timeScale.offsetFromTAI(this));
- return new Date(FastMath.round((time + 10957.5 * 86400.0) * 1000));
- }
- /** Split the instance into date/time components.
- * @param timeScale time scale to use
- * @return date/time components
- */
- public DateTimeComponents getComponents(final TimeScale timeScale) {
- if (Double.isInfinite(offset)) {
- // special handling for past and future infinity
- if (offset < 0) {
- return new DateTimeComponents(DateComponents.MIN_EPOCH, TimeComponents.H00);
- } else {
- return new DateTimeComponents(DateComponents.MAX_EPOCH,
- new TimeComponents(23, 59, 59.999));
- }
- }
- // Compute offset from 2000-01-01T00:00:00 in specified time scale.
- // Use 2Sum for high precision.
- final double taiOffset = timeScale.offsetFromTAI(this);
- final SumAndResidual sumAndResidual = MathUtils.twoSum(offset, taiOffset);
- // split date and time
- final long carry = (long) FastMath.floor(sumAndResidual.getSum());
- double offset2000B = (sumAndResidual.getSum() - carry) + sumAndResidual.getResidual();
- long offset2000A = epoch + carry + 43200l;
- if (offset2000B < 0) {
- offset2000A -= 1;
- offset2000B += 1;
- }
- long time = offset2000A % 86400l;
- if (time < 0l) {
- time += 86400l;
- }
- final int date = (int) ((offset2000A - time) / 86400l);
- // extract calendar elements
- final DateComponents dateComponents = new DateComponents(DateComponents.J2000_EPOCH, date);
- // extract time element, accounting for leap seconds
- final double leap = timeScale.insideLeap(this) ? timeScale.getLeap(this) : 0;
- final int minuteDuration = timeScale.minuteDuration(this);
- final TimeComponents timeComponents =
- TimeComponents.fromSeconds((int) time, offset2000B, leap, minuteDuration);
- // build the components
- return new DateTimeComponents(dateComponents, timeComponents);
- }
- /** Split the instance into date/time components for a local time.
- *
- * <p>This method uses the {@link DataContext#getDefault() default data context}.
- *
- * @param minutesFromUTC offset in <em>minutes</em> from UTC (positive Eastwards UTC,
- * negative Westward UTC)
- * @return date/time components
- * @since 7.2
- * @see #getComponents(int, TimeScale)
- */
- @DefaultDataContext
- public DateTimeComponents getComponents(final int minutesFromUTC) {
- return getComponents(minutesFromUTC,
- DataContext.getDefault().getTimeScales().getUTC());
- }
- /**
- * Split the instance into date/time components for a local time.
- *
- * @param minutesFromUTC offset in <em>minutes</em> from UTC (positive Eastwards UTC,
- * negative Westward UTC)
- * @param utc time scale used to compute date and time components.
- * @return date/time components
- * @since 10.1
- */
- public DateTimeComponents getComponents(final int minutesFromUTC,
- final TimeScale utc) {
- final DateTimeComponents utcComponents = getComponents(utc);
- // shift the date according to UTC offset, but WITHOUT touching the seconds,
- // as they may exceed 60.0 during a leap seconds introduction,
- // and we want to preserve these special cases
- final double seconds = utcComponents.getTime().getSecond();
- int minute = utcComponents.getTime().getMinute() + minutesFromUTC;
- final int hourShift;
- if (minute < 0) {
- hourShift = (minute - 59) / 60;
- } else if (minute > 59) {
- hourShift = minute / 60;
- } else {
- hourShift = 0;
- }
- minute -= 60 * hourShift;
- int hour = utcComponents.getTime().getHour() + hourShift;
- final int dayShift;
- if (hour < 0) {
- dayShift = (hour - 23) / 24;
- } else if (hour > 23) {
- dayShift = hour / 24;
- } else {
- dayShift = 0;
- }
- hour -= 24 * dayShift;
- return new DateTimeComponents(new DateComponents(utcComponents.getDate(), dayShift),
- new TimeComponents(hour, minute, seconds, minutesFromUTC));
- }
- /** Split the instance into date/time components for a time zone.
- *
- * <p>This method uses the {@link DataContext#getDefault() default data context}.
- *
- * @param timeZone time zone
- * @return date/time components
- * @since 7.2
- * @see #getComponents(TimeZone, TimeScale)
- */
- @DefaultDataContext
- public DateTimeComponents getComponents(final TimeZone timeZone) {
- return getComponents(timeZone, DataContext.getDefault().getTimeScales().getUTC());
- }
- /**
- * Split the instance into date/time components for a time zone.
- *
- * @param timeZone time zone
- * @param utc time scale used to computed date and time components.
- * @return date/time components
- * @since 10.1
- */
- public DateTimeComponents getComponents(final TimeZone timeZone,
- final TimeScale utc) {
- final AbsoluteDate javaEpoch = new AbsoluteDate(DateComponents.JAVA_EPOCH, utc);
- final long milliseconds = FastMath.round(1000 * offsetFrom(javaEpoch, utc));
- return getComponents(timeZone.getOffset(milliseconds) / 60000, utc);
- }
- /** Compare the instance with another date.
- * @param date other date to compare the instance to
- * @return a negative integer, zero, or a positive integer as this date
- * is before, simultaneous, or after the specified date.
- */
- public int compareTo(final AbsoluteDate date) {
- final double duration = durationFrom(date);
- if (!Double.isNaN(duration)) {
- return Double.compare(duration, 0.0);
- }
- // both dates are infinity or one is NaN or both are NaN
- return Double.compare(offset, date.offset);
- }
- /** {@inheritDoc} */
- public AbsoluteDate getDate() {
- return this;
- }
- /** Check if the instance represents the same time as another instance.
- * @param date other date
- * @return true if the instance and the other date refer to the same instant
- */
- public boolean equals(final Object date) {
- if (date == this) {
- // first fast check
- return true;
- }
- if (date instanceof AbsoluteDate) {
- // Improve robustness against positive/negative infinity dates
- if ( this.offset == Double.NEGATIVE_INFINITY && ((AbsoluteDate) date).offset == Double.NEGATIVE_INFINITY ||
- this.offset == Double.POSITIVE_INFINITY && ((AbsoluteDate) date).offset == Double.POSITIVE_INFINITY ) {
- return true;
- } else {
- return durationFrom((AbsoluteDate) date) == 0;
- }
- }
- return false;
- }
- /** Check if the instance represents the same time as another.
- * @param other the instant to compare this date to
- * @return true if the instance and the argument refer to the same instant
- * @see #isCloseTo(TimeStamped, double)
- * @since 10.1
- */
- public boolean isEqualTo(final TimeStamped other) {
- return this.equals(other.getDate());
- }
- /** Check if the instance time is close to another.
- * @param other the instant to compare this date to
- * @param tolerance the separation, in seconds, under which the two instants will be considered close to each other
- * @return true if the duration between the instance and the argument is strictly below the tolerance
- * @see #isEqualTo(TimeStamped)
- * @since 10.1
- */
- public boolean isCloseTo(final TimeStamped other, final double tolerance) {
- return FastMath.abs(this.durationFrom(other.getDate())) < tolerance;
- }
- /** Check if the instance represents a time that is strictly before another.
- * @param other the instant to compare this date to
- * @return true if the instance is strictly before the argument when ordering chronologically
- * @see #isBeforeOrEqualTo(TimeStamped)
- * @since 10.1
- */
- public boolean isBefore(final TimeStamped other) {
- return this.compareTo(other.getDate()) < 0;
- }
- /** Check if the instance represents a time that is strictly after another.
- * @param other the instant to compare this date to
- * @return true if the instance is strictly after the argument when ordering chronologically
- * @see #isAfterOrEqualTo(TimeStamped)
- * @since 10.1
- */
- public boolean isAfter(final TimeStamped other) {
- return this.compareTo(other.getDate()) > 0;
- }
- /** Check if the instance represents a time that is before or equal to another.
- * @param other the instant to compare this date to
- * @return true if the instance is before (or equal to) the argument when ordering chronologically
- * @see #isBefore(TimeStamped)
- * @since 10.1
- */
- public boolean isBeforeOrEqualTo(final TimeStamped other) {
- return this.isEqualTo(other) || this.isBefore(other);
- }
- /** Check if the instance represents a time that is after or equal to another.
- * @param other the instant to compare this date to
- * @return true if the instance is after (or equal to) the argument when ordering chronologically
- * @see #isAfterOrEqualTo(TimeStamped)
- * @since 10.1
- */
- public boolean isAfterOrEqualTo(final TimeStamped other) {
- return this.isEqualTo(other) || this.isAfter(other);
- }
- /** Check if the instance represents a time that is strictly between two others representing
- * the boundaries of a time span. The two boundaries can be provided in any order: in other words,
- * whether <code>boundary</code> represents a time that is before or after <code>otherBoundary</code> will
- * not change the result of this method.
- * @param boundary one end of the time span
- * @param otherBoundary the other end of the time span
- * @return true if the instance is strictly between the two arguments when ordering chronologically
- * @see #isBetweenOrEqualTo(TimeStamped, TimeStamped)
- * @since 10.1
- */
- public boolean isBetween(final TimeStamped boundary, final TimeStamped otherBoundary) {
- final TimeStamped beginning;
- final TimeStamped end;
- if (boundary.getDate().isBefore(otherBoundary)) {
- beginning = boundary;
- end = otherBoundary;
- } else {
- beginning = otherBoundary;
- end = boundary;
- }
- return this.isAfter(beginning) && this.isBefore(end);
- }
- /** Check if the instance represents a time that is between two others representing
- * the boundaries of a time span, or equal to one of them. The two boundaries can be provided in any order:
- * in other words, whether <code>boundary</code> represents a time that is before or after
- * <code>otherBoundary</code> will not change the result of this method.
- * @param boundary one end of the time span
- * @param otherBoundary the other end of the time span
- * @return true if the instance is between the two arguments (or equal to at least one of them)
- * when ordering chronologically
- * @see #isBetween(TimeStamped, TimeStamped)
- * @since 10.1
- */
- public boolean isBetweenOrEqualTo(final TimeStamped boundary, final TimeStamped otherBoundary) {
- return this.isEqualTo(boundary) || this.isEqualTo(otherBoundary) || this.isBetween(boundary, otherBoundary);
- }
- /** Get a hashcode for this date.
- * @return hashcode
- */
- public int hashCode() {
- final long l = Double.doubleToLongBits(durationFrom(ARBITRARY_EPOCH));
- return (int) (l ^ (l >>> 32));
- }
- /**
- * Get a String representation of the instant location with up to 16 digits of
- * precision for the seconds value.
- *
- * <p> Since this method is used in exception messages and error handling every
- * effort is made to return some representation of the instant. If UTC is available
- * from the default data context then it is used to format the string in UTC. If not
- * then TAI is used. Finally if the prior attempts fail this method falls back to
- * converting this class's internal representation to a string.
- *
- * <p>This method uses the {@link DataContext#getDefault() default data context}.
- *
- * @return a string representation of the instance, in ISO-8601 format if UTC is
- * available from the default data context.
- * @see #toString(TimeScale)
- * @see #toStringRfc3339(TimeScale)
- * @see DateTimeComponents#toString(int, int)
- */
- @DefaultDataContext
- public String toString() {
- // CHECKSTYLE: stop IllegalCatch check
- try {
- // try to use UTC first at that is likely most familiar to the user.
- return toString(DataContext.getDefault().getTimeScales().getUTC()) + "Z";
- } catch (RuntimeException e1) {
- // catch OrekitException, OrekitIllegalStateException, etc.
- try {
- // UTC failed, try to use TAI
- return toString(new TAIScale()) + " TAI";
- } catch (RuntimeException e2) {
- // catch OrekitException, OrekitIllegalStateException, etc.
- // Likely failed to convert to ymdhms.
- // Give user some indication of what time it is.
- try {
- return "(" + this.epoch + " + " + this.offset + ") seconds past epoch";
- } catch (RuntimeException e3) {
- // give up and throw an exception
- e2.addSuppressed(e3);
- e1.addSuppressed(e2);
- throw e1;
- }
- }
- }
- // CHECKSTYLE: resume IllegalCatch check
- }
- /**
- * Get a String representation of the instant location in ISO-8601 format without the
- * UTC offset and with up to 16 digits of precision for the seconds value.
- *
- * @param timeScale time scale to use
- * @return a string representation of the instance.
- * @see #toStringRfc3339(TimeScale)
- * @see DateTimeComponents#toString(int, int)
- */
- public String toString(final TimeScale timeScale) {
- return getComponents(timeScale).toStringWithoutUtcOffset();
- }
- /** Get a String representation of the instant location for a local time.
- *
- * <p>This method uses the {@link DataContext#getDefault() default data context}.
- *
- * @param minutesFromUTC offset in <em>minutes</em> from UTC (positive Eastwards UTC,
- * negative Westward UTC).
- * @return string representation of the instance,
- * in ISO-8601 format with milliseconds accuracy
- * @since 7.2
- * @see #toString(int, TimeScale)
- */
- @DefaultDataContext
- public String toString(final int minutesFromUTC) {
- return toString(minutesFromUTC,
- DataContext.getDefault().getTimeScales().getUTC());
- }
- /**
- * Get a String representation of the instant location for a local time.
- *
- * @param minutesFromUTC offset in <em>minutes</em> from UTC (positive Eastwards UTC,
- * negative Westward UTC).
- * @param utc time scale used to compute date and time components.
- * @return string representation of the instance, in ISO-8601 format with milliseconds
- * accuracy
- * @since 10.1
- * @see #getComponents(int, TimeScale)
- * @see DateTimeComponents#toString(int, int)
- */
- public String toString(final int minutesFromUTC, final TimeScale utc) {
- final int minuteDuration = utc.minuteDuration(this);
- return getComponents(minutesFromUTC, utc).toString(minuteDuration);
- }
- /** Get a String representation of the instant location for a time zone.
- *
- * <p>This method uses the {@link DataContext#getDefault() default data context}.
- *
- * @param timeZone time zone
- * @return string representation of the instance,
- * in ISO-8601 format with milliseconds accuracy
- * @since 7.2
- * @see #toString(TimeZone, TimeScale)
- */
- @DefaultDataContext
- public String toString(final TimeZone timeZone) {
- return toString(timeZone, DataContext.getDefault().getTimeScales().getUTC());
- }
- /**
- * Get a String representation of the instant location for a time zone.
- *
- * @param timeZone time zone
- * @param utc time scale used to compute date and time components.
- * @return string representation of the instance, in ISO-8601 format with milliseconds
- * accuracy
- * @since 10.1
- * @see #getComponents(TimeZone, TimeScale)
- * @see DateTimeComponents#toString(int, int)
- */
- public String toString(final TimeZone timeZone, final TimeScale utc) {
- final int minuteDuration = utc.minuteDuration(this);
- return getComponents(timeZone, utc).toString(minuteDuration);
- }
- /**
- * Represent the given date as a string according to the format in RFC 3339. RFC3339
- * is a restricted subset of ISO 8601 with a well defined grammar. Enough digits are
- * included in the seconds value to avoid rounding up to the next minute.
- *
- * <p>This method is different than {@link AbsoluteDate#toString(TimeScale)} in that
- * it includes a {@code "Z"} at the end to indicate the time zone and enough precision
- * to represent the point in time without rounding up to the next minute.
- *
- * <p>RFC3339 is unable to represent BC years, years of 10000 or more, time zone
- * offsets of 100 hours or more, or NaN. In these cases the value returned from this
- * method will not be valid RFC3339 format.
- *
- * @param utc time scale.
- * @return RFC 3339 format string.
- * @see <a href="https://tools.ietf.org/html/rfc3339#page-8">RFC 3339</a>
- * @see DateTimeComponents#toStringRfc3339()
- * @see #toString(TimeScale)
- * @see #getComponents(TimeScale)
- */
- public String toStringRfc3339(final TimeScale utc) {
- return this.getComponents(utc).toStringRfc3339();
- }
- /**
- * Return a string representation of this date-time, rounded to the given precision.
- *
- * <p>The format used is ISO8601 without the UTC offset.</p>
- *
- * <p>Calling {@code toStringWithoutUtcOffset(DataContext.getDefault().getTimeScales().getUTC(),
- * 3)} will emulate the behavior of {@link #toString()} in Orekit 10 and earlier. Note
- * this method is more accurate as it correctly handles rounding during leap seconds.
- *
- * @param timeScale to use to compute components.
- * @param fractionDigits the number of digits to include after the decimal point in
- * the string representation of the seconds. The date and time
- * is first rounded as necessary. {@code fractionDigits} must be
- * greater than or equal to {@code 0}.
- * @return string representation of this date, time, and UTC offset
- * @see #toString(TimeScale)
- * @see #toStringRfc3339(TimeScale)
- * @see DateTimeComponents#toString(int, int)
- * @see DateTimeComponents#toStringWithoutUtcOffset(int, int)
- * @since 11.1
- */
- public String toStringWithoutUtcOffset(final TimeScale timeScale,
- final int fractionDigits) {
- return this.getComponents(timeScale)
- .toStringWithoutUtcOffset(timeScale.minuteDuration(this), fractionDigits);
- }
- }