FDOA.java
- /* Copyright 2002-2023 Mark Rutten
- * Licensed to CS GROUP (CS) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * CS licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.orekit.estimation.measurements;
- import java.util.Arrays;
- import java.util.HashMap;
- import java.util.Map;
- import org.hipparchus.analysis.differentiation.Gradient;
- import org.hipparchus.analysis.differentiation.GradientField;
- import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
- import org.hipparchus.geometry.euclidean.threed.Vector3D;
- import org.hipparchus.util.FastMath;
- import org.orekit.frames.FieldTransform;
- import org.orekit.frames.Transform;
- import org.orekit.propagation.SpacecraftState;
- import org.orekit.time.AbsoluteDate;
- import org.orekit.time.FieldAbsoluteDate;
- import org.orekit.utils.Constants;
- import org.orekit.utils.ParameterDriver;
- import org.orekit.utils.TimeSpanMap.Span;
- import org.orekit.utils.TimeStampedFieldPVCoordinates;
- import org.orekit.utils.TimeStampedPVCoordinates;
- /** Class modeling a Frequency Difference of Arrival measurement with a satellite as emitter
- * and two ground stations as receivers.
- * <p>
- * FDOA measures the difference in signal arrival frequency between the emitter and receivers,
- * corresponding to a difference in range-rate from the two receivers to the emitter.
- * </p><p>
- * The date of the measurement corresponds to the reception of the signal by the prime station.
- * The measurement corresponds to the frequency of the signal received at the prime station at
- * the date of the measurement minus the frequency of the signal received at the second station:
- * <code>fdoa = f<sub>1</sub> - f<sub>2</sub></code>
- * </p><p>
- * The motion of the stations and the satellite during the signal flight time are taken into account.
- * </p>
- * @author Mark Rutten
- * @since 12.0
- */
- public class FDOA extends GroundReceiverMeasurement<FDOA> {
- /** Type of the measurement. */
- public static final String MEASUREMENT_TYPE = "FDOA";
- /** Centre frequency of the signal emitted from the satellite. */
- private final double centreFrequency;
- /** Second ground station, the one that gives the measurement, i.e. the delay. */
- private final GroundStation secondStation;
- /** Simple constructor.
- * @param primeStation ground station that gives the date of the measurement
- * @param secondStation ground station that gives the measurement
- * @param centreFrequency satellite emitter frequency
- * @param date date of the measurement
- * @param fdoa observed value (s)
- * @param sigma theoretical standard deviation
- * @param baseWeight base weight
- * @param satellite satellite related to this measurement
- */
- public FDOA(final GroundStation primeStation, final GroundStation secondStation,
- final double centreFrequency,
- final AbsoluteDate date, final double fdoa, final double sigma,
- final double baseWeight, final ObservableSatellite satellite) {
- super(primeStation, false, date, fdoa, sigma, baseWeight, satellite);
- // add parameter drivers for the secondary station
- addParameterDriver(secondStation.getClockOffsetDriver());
- addParameterDriver(secondStation.getEastOffsetDriver());
- addParameterDriver(secondStation.getNorthOffsetDriver());
- addParameterDriver(secondStation.getZenithOffsetDriver());
- addParameterDriver(secondStation.getPrimeMeridianOffsetDriver());
- addParameterDriver(secondStation.getPrimeMeridianDriftDriver());
- addParameterDriver(secondStation.getPolarOffsetXDriver());
- addParameterDriver(secondStation.getPolarDriftXDriver());
- addParameterDriver(secondStation.getPolarOffsetYDriver());
- addParameterDriver(secondStation.getPolarDriftYDriver());
- this.secondStation = secondStation;
- this.centreFrequency = centreFrequency;
- }
- /** Get the prime ground station, the one that gives the date of the measurement.
- * @return prime ground station
- */
- public GroundStation getPrimeStation() {
- return getStation();
- }
- /** Get the second ground station, the one that gives the measurement.
- * @return second ground station
- */
- public GroundStation getSecondStation() {
- return secondStation;
- }
- /** {@inheritDoc} */
- @Override
- protected EstimatedMeasurementBase<FDOA> theoreticalEvaluationWithoutDerivatives(final int iteration, final int evaluation,
- final SpacecraftState[] states) {
- final SpacecraftState state = states[0];
- // coordinates of the spacecraft
- final TimeStampedPVCoordinates pva = state.getPVCoordinates();
- // transform between prime station frame and inertial frame
- // at the real date of measurement, i.e. taking station clock offset into account
- final Transform primeToInert = getStation().getOffsetToInertial(state.getFrame(), getDate(), false);
- final AbsoluteDate measurementDate = primeToInert.getDate();
- // prime station PV in inertial frame at the real date of the measurement
- final TimeStampedPVCoordinates primePV =
- primeToInert.transformPVCoordinates(new TimeStampedPVCoordinates(measurementDate,
- Vector3D.ZERO, Vector3D.ZERO, Vector3D.ZERO));
- // compute downlink delay from emitter to prime receiver
- final double tau1 = signalTimeOfFlight(pva, primePV.getPosition(), measurementDate);
- // elapsed time between state date and signal arrival to the prime receiver
- final double dtMtau1 = measurementDate.durationFrom(state.getDate()) - tau1;
- // satellite state at signal emission
- final SpacecraftState emitterState = state.shiftedBy(dtMtau1);
- // satellite pv at signal emission (re)computed with gradient
- final TimeStampedPVCoordinates emitterPV = pva.shiftedBy(dtMtau1);
- // second station PV in inertial frame at real date of signal reception
- TimeStampedPVCoordinates secondPV;
- // initialize search loop of the reception date by second station
- double tau2 = tau1;
- double delta;
- int count = 0;
- do {
- final double previous = tau2;
- // date of signal arrival on second receiver
- final AbsoluteDate dateAt2 = emitterState.getDate().shiftedBy(previous);
- // transform between second station frame and inertial frame
- // at the date of signal arrival, taking clock offset into account
- final Transform secondToInert = secondStation.getOffsetToInertial(state.getFrame(), dateAt2, false);
- // second receiver position in inertial frame at the real date of signal reception
- secondPV = secondToInert.transformPVCoordinates(new TimeStampedPVCoordinates(secondToInert.getDate(),
- Vector3D.ZERO, Vector3D.ZERO, Vector3D.ZERO));
- // downlink delay from emitter to second receiver
- tau2 = linkDelay(emitterPV.getPosition(), secondPV.getPosition());
- // Change in the computed downlink delay
- delta = FastMath.abs(tau2 - previous);
- } while (count++ < 10 && delta >= 2 * FastMath.ulp(tau2));
- // The measured TDOA is (tau1 + clockOffset1) - (tau2 + clockOffset2)
- final double offset1 = getStation().getClockOffsetDriver().getValue(emitterState.getDate());
- final double offset2 = secondStation.getClockOffsetDriver().getValue(emitterState.getDate());
- final double tdoa = (tau1 + offset1) - (tau2 + offset2);
- // Range-rate sat->primary station
- final EstimatedMeasurementBase<FDOA> evalPrimary = oneWayTheoreticalEvaluation(iteration, evaluation, true,
- primePV, emitterPV, emitterState);
- // Range-rate sat->secondary station
- final EstimatedMeasurementBase<FDOA> evalSecondary = oneWayTheoreticalEvaluation(iteration, evaluation, true,
- secondPV, emitterPV, emitterState);
- // Evaluate the FDOA value and derivatives
- // -------------------------------------------
- final EstimatedMeasurementBase<FDOA> estimated =
- new EstimatedMeasurementBase<>(this, iteration, evaluation,
- new SpacecraftState[] {
- emitterState
- },
- new TimeStampedPVCoordinates[] {
- emitterPV,
- tdoa > 0 ? secondPV : primePV,
- tdoa > 0 ? primePV : secondPV
- });
- // set FDOA value
- final double rangeRateToHz = -centreFrequency / Constants.SPEED_OF_LIGHT;
- estimated.setEstimatedValue((evalPrimary.getEstimatedValue()[0] - evalSecondary.getEstimatedValue()[0]) * rangeRateToHz);
- return estimated;
- }
- /** {@inheritDoc} */
- @Override
- protected EstimatedMeasurement<FDOA> theoreticalEvaluation(final int iteration, final int evaluation,
- final SpacecraftState[] states) {
- final SpacecraftState state = states[0];
- // TDOA derivatives are computed with respect to:
- // - Spacecraft state in inertial frame
- // - Prime station parameters
- // - Second station parameters
- // --------------------------
- // - 0..2 - Position of the spacecraft in inertial frame
- // - 3..5 - Velocity of the spacecraft in inertial frame
- // - 6..n - stations' parameters (clock offset, station offsets, pole, prime meridian...)
- int nbParams = 6;
- final Map<String, Integer> indices = new HashMap<>();
- for (ParameterDriver driver : getParametersDrivers()) {
- // we have to check for duplicate keys because primary and secondary station share
- // pole and prime meridian parameters names that must be considered
- // as one set only (they are combined together by the estimation engine)
- if (driver.isSelected()) {
- for (Span<String> span = driver.getNamesSpanMap().getFirstSpan(); span != null; span = span.next()) {
- if (!indices.containsKey(span.getData())) {
- indices.put(span.getData(), nbParams++);
- }
- }
- }
- }
- final FieldVector3D<Gradient> zero = FieldVector3D.getZero(GradientField.getField(nbParams));
- // coordinates of the spacecraft as a gradient
- final TimeStampedFieldPVCoordinates<Gradient> pvaG = getCoordinates(state, 0, nbParams);
- // transform between prime station frame and inertial frame
- // at the real date of measurement, i.e. taking station clock offset into account
- final FieldTransform<Gradient> primeToInert =
- getStation().getOffsetToInertial(state.getFrame(), getDate(), nbParams, indices);
- final FieldAbsoluteDate<Gradient> measurementDateG = primeToInert.getFieldDate();
- // prime station PV in inertial frame at the real date of the measurement
- final TimeStampedFieldPVCoordinates<Gradient> primePV =
- primeToInert.transformPVCoordinates(new TimeStampedFieldPVCoordinates<>(measurementDateG,
- zero, zero, zero));
- // compute downlink delay from emitter to prime receiver
- final Gradient tau1 = signalTimeOfFlight(pvaG, primePV.getPosition(), measurementDateG);
- // elapsed time between state date and signal arrival to the prime receiver
- final Gradient dtMtau1 = measurementDateG.durationFrom(state.getDate()).subtract(tau1);
- // satellite state at signal emission
- final SpacecraftState emitterState = state.shiftedBy(dtMtau1.getValue());
- // satellite pv at signal emission (re)computed with gradient
- final TimeStampedFieldPVCoordinates<Gradient> emitterPV = pvaG.shiftedBy(dtMtau1);
- // second station PV in inertial frame at real date of signal reception
- TimeStampedFieldPVCoordinates<Gradient> secondPV;
- // initialize search loop of the reception date by second station
- Gradient tau2 = tau1;
- double delta;
- int count = 0;
- do {
- final double previous = tau2.getValue();
- // date of signal arrival on second receiver
- final AbsoluteDate dateAt2 = emitterState.getDate().shiftedBy(previous);
- // transform between second station frame and inertial frame
- // at the date of signal arrival, taking clock offset into account
- final FieldTransform<Gradient> secondToInert =
- secondStation.getOffsetToInertial(state.getFrame(), dateAt2,
- nbParams, indices);
- // second receiver position in inertial frame at the real date of signal reception
- secondPV = secondToInert.transformPVCoordinates(new TimeStampedFieldPVCoordinates<>(secondToInert.getFieldDate(),
- zero, zero, zero));
- // downlink delay from emitter to second receiver
- tau2 = linkDelay(emitterPV.getPosition(), secondPV.getPosition());
- // Change in the computed downlink delay
- delta = FastMath.abs(tau2.getValue() - previous);
- } while (count++ < 10 && delta >= 2 * FastMath.ulp(tau2.getValue()));
- // The measured TDOA is (tau1 + clockOffset1) - (tau2 + clockOffset2)
- final Gradient offset1 = getStation().getClockOffsetDriver().getValue(nbParams, indices, emitterState.getDate());
- final Gradient offset2 = secondStation.getClockOffsetDriver().getValue(nbParams, indices, emitterState.getDate());
- final Gradient tdoaG = tau1.add(offset1).subtract(tau2.add(offset2));
- final double tdoa = tdoaG.getValue();
- // Range-rate sat->primary station
- final EstimatedMeasurement<FDOA> evalPrimary = oneWayTheoreticalEvaluation(iteration, evaluation, true,
- primePV, emitterPV, emitterState, indices);
- // Range-rate sat->secondary station
- final EstimatedMeasurement<FDOA> evalSecondary = oneWayTheoreticalEvaluation(iteration, evaluation, true,
- secondPV, emitterPV, emitterState, indices);
- // Evaluate the FDOA value and derivatives
- // -------------------------------------------
- final TimeStampedPVCoordinates pv1 = primePV.toTimeStampedPVCoordinates();
- final TimeStampedPVCoordinates pv2 = secondPV.toTimeStampedPVCoordinates();
- final EstimatedMeasurement<FDOA> estimated =
- new EstimatedMeasurement<>(this, iteration, evaluation,
- new SpacecraftState[] {
- emitterState
- },
- new TimeStampedPVCoordinates[] {
- emitterPV.toTimeStampedPVCoordinates(),
- tdoa > 0 ? pv2 : pv1,
- tdoa > 0 ? pv1 : pv2
- });
- // set FDOA value
- final double rangeRateToHz = -centreFrequency / Constants.SPEED_OF_LIGHT;
- estimated.setEstimatedValue((evalPrimary.getEstimatedValue()[0] - evalSecondary.getEstimatedValue()[0]) * rangeRateToHz);
- // combine primary and secondary partial derivatives with respect to state
- final double[][] sd1 = evalPrimary.getStateDerivatives(0);
- final double[][] sd2 = evalSecondary.getStateDerivatives(0);
- final double[][] sd = new double[sd1.length][sd1[0].length];
- for (int i = 0; i < sd.length; ++i) {
- for (int j = 0; j < sd[0].length; ++j) {
- sd[i][j] = (sd1[i][j] - sd2[i][j]) * rangeRateToHz;
- }
- }
- estimated.setStateDerivatives(0, sd);
- // combine primary and secondary partial derivatives with respect to parameters
- evalPrimary.getDerivativesDrivers().forEach(driver -> {
- for (Span<Double> span = driver.getValueSpanMap().getFirstSpan(); span != null; span = span.next()) {
- final double[] pd1 = evalPrimary.getParameterDerivatives(driver, span.getStart());
- final double[] pd2 = evalSecondary.getParameterDerivatives(driver, span.getStart());
- final double[] pd = new double[pd1.length];
- for (int i = 0; i < pd.length; ++i) {
- pd[i] = (pd1[i] - pd2[i]) * rangeRateToHz;
- }
- estimated.setParameterDerivatives(driver, span.getStart(), pd);
- }
- });
- return estimated;
- }
- /** Compute propagation delay on a link.
- * @param emitter the position of the emitter
- * @param receiver the position of the receiver (same frame as emitter)
- * @return the propagation delay
- */
- private double linkDelay(final Vector3D emitter,
- final Vector3D receiver) {
- return receiver.distance(emitter) / Constants.SPEED_OF_LIGHT;
- }
- /** Compute propagation delay on a link.
- * @param emitter the position of the emitter
- * @param receiver the position of the receiver (same frame as emitter)
- * @return the propagation delay
- */
- private Gradient linkDelay(final FieldVector3D<Gradient> emitter,
- final FieldVector3D<Gradient> receiver) {
- return receiver.distance(emitter).divide(Constants.SPEED_OF_LIGHT);
- }
- /** Evaluate range rate measurement in one-way.
- * @param iteration iteration number
- * @param evaluation evaluations counter
- * @param downlink indicator for downlink leg
- * @param stationPV station coordinates when signal is at station
- * @param transitPV spacecraft coordinates at onboard signal transit
- * @param transitState orbital state at onboard signal transit
- * @return theoretical value for the current leg
- */
- private EstimatedMeasurementBase<FDOA> oneWayTheoreticalEvaluation(final int iteration, final int evaluation, final boolean downlink,
- final TimeStampedPVCoordinates stationPV,
- final TimeStampedPVCoordinates transitPV,
- final SpacecraftState transitState) {
- // prepare the evaluation
- final EstimatedMeasurementBase<FDOA> estimated =
- new EstimatedMeasurementBase<>(this, iteration, evaluation,
- new SpacecraftState[] {
- transitState
- }, new TimeStampedPVCoordinates[] {
- downlink ? transitPV : stationPV,
- downlink ? stationPV : transitPV
- });
- // range rate value
- final Vector3D stationPosition = stationPV.getPosition();
- final Vector3D relativePosition = stationPosition.subtract(transitPV.getPosition());
- final Vector3D stationVelocity = stationPV.getVelocity();
- final Vector3D relativeVelocity = stationVelocity.subtract(transitPV.getVelocity());
- // radial direction
- final Vector3D lineOfSight = relativePosition.normalize();
- // range rate
- final double rangeRate = Vector3D.dotProduct(relativeVelocity, lineOfSight);
- estimated.setEstimatedValue(rangeRate);
- return estimated;
- }
- /** Evaluate range rate measurement in one-way.
- * @param iteration iteration number
- * @param evaluation evaluations counter
- * @param downlink indicator for downlink leg
- * @param stationPV station coordinates when signal is at station
- * @param transitPV spacecraft coordinates at onboard signal transit
- * @param transitState orbital state at onboard signal transit
- * @param indices indices of the estimated parameters in derivatives computations
- * @return theoretical value for the current leg
- */
- private EstimatedMeasurement<FDOA> oneWayTheoreticalEvaluation(final int iteration, final int evaluation, final boolean downlink,
- final TimeStampedFieldPVCoordinates<Gradient> stationPV,
- final TimeStampedFieldPVCoordinates<Gradient> transitPV,
- final SpacecraftState transitState,
- final Map<String, Integer> indices) {
- // prepare the evaluation
- final EstimatedMeasurement<FDOA> estimated =
- new EstimatedMeasurement<>(this, iteration, evaluation,
- new SpacecraftState[] {
- transitState
- }, new TimeStampedPVCoordinates[] {
- (downlink ? transitPV : stationPV).toTimeStampedPVCoordinates(),
- (downlink ? stationPV : transitPV).toTimeStampedPVCoordinates()
- });
- // range rate value
- final FieldVector3D<Gradient> stationPosition = stationPV.getPosition();
- final FieldVector3D<Gradient> relativePosition = stationPosition.subtract(transitPV.getPosition());
- final FieldVector3D<Gradient> stationVelocity = stationPV.getVelocity();
- final FieldVector3D<Gradient> relativeVelocity = stationVelocity.subtract(transitPV.getVelocity());
- // radial direction
- final FieldVector3D<Gradient> lineOfSight = relativePosition.normalize();
- // range rate
- final Gradient rangeRate = FieldVector3D.dotProduct(relativeVelocity, lineOfSight);
- estimated.setEstimatedValue(rangeRate.getValue());
- // compute partial derivatives of (rr) with respect to spacecraft state Cartesian coordinates
- final double[] derivatives = rangeRate.getGradient();
- estimated.setStateDerivatives(0, Arrays.copyOfRange(derivatives, 0, 6));
- // set partial derivatives with respect to parameters
- for (final ParameterDriver driver : getParametersDrivers()) {
- for (Span<String> span = driver.getNamesSpanMap().getFirstSpan(); span != null; span = span.next()) {
- final Integer index = indices.get(span.getData());
- if (index != null) {
- estimated.setParameterDerivatives(driver, span.getStart(), derivatives[index]);
- }
- }
- }
- return estimated;
- }
- }