FDOA.java

  1. /* Copyright 2002-2023 Mark Rutten
  2.  * Licensed to CS GROUP (CS) under one or more
  3.  * contributor license agreements.  See the NOTICE file distributed with
  4.  * this work for additional information regarding copyright ownership.
  5.  * CS licenses this file to You under the Apache License, Version 2.0
  6.  * (the "License"); you may not use this file except in compliance with
  7.  * the License.  You may obtain a copy of the License at
  8.  *
  9.  *   http://www.apache.org/licenses/LICENSE-2.0
  10.  *
  11.  * Unless required by applicable law or agreed to in writing, software
  12.  * distributed under the License is distributed on an "AS IS" BASIS,
  13.  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  14.  * See the License for the specific language governing permissions and
  15.  * limitations under the License.
  16.  */
  17. package org.orekit.estimation.measurements;

  18. import java.util.Arrays;
  19. import java.util.HashMap;
  20. import java.util.Map;

  21. import org.hipparchus.analysis.differentiation.Gradient;
  22. import org.hipparchus.analysis.differentiation.GradientField;
  23. import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
  24. import org.hipparchus.geometry.euclidean.threed.Vector3D;
  25. import org.hipparchus.util.FastMath;
  26. import org.orekit.frames.FieldTransform;
  27. import org.orekit.frames.Transform;
  28. import org.orekit.propagation.SpacecraftState;
  29. import org.orekit.time.AbsoluteDate;
  30. import org.orekit.time.FieldAbsoluteDate;
  31. import org.orekit.utils.Constants;
  32. import org.orekit.utils.ParameterDriver;
  33. import org.orekit.utils.TimeSpanMap.Span;
  34. import org.orekit.utils.TimeStampedFieldPVCoordinates;
  35. import org.orekit.utils.TimeStampedPVCoordinates;

  36. /** Class modeling a Frequency Difference of Arrival measurement with a satellite as emitter
  37.  * and two ground stations as receivers.
  38.  * <p>
  39.  * FDOA measures the difference in signal arrival frequency between the emitter and receivers,
  40.  * corresponding to a difference in range-rate from the two receivers to the emitter.
  41.  * </p><p>
  42.  * The date of the measurement corresponds to the reception of the signal by the prime station.
  43.  * The measurement corresponds to the frequency of the signal received at the prime station at
  44.  * the date of the measurement minus the frequency of the signal received at the second station:
  45.  * <code>fdoa = f<sub>1</sub> - f<sub>2</sub></code>
  46.  * </p><p>
  47.  * The motion of the stations and the satellite during the signal flight time are taken into account.
  48.  * </p>
  49.  * @author Mark Rutten
  50.  * @since 12.0
  51.  */
  52. public class FDOA extends GroundReceiverMeasurement<FDOA> {

  53.     /** Type of the measurement. */
  54.     public static final String MEASUREMENT_TYPE = "FDOA";

  55.     /** Centre frequency of the signal emitted from the satellite. */
  56.     private final double centreFrequency;

  57.     /** Second ground station, the one that gives the measurement, i.e. the delay. */
  58.     private final GroundStation secondStation;

  59.     /** Simple constructor.
  60.      * @param primeStation ground station that gives the date of the measurement
  61.      * @param secondStation ground station that gives the measurement
  62.      * @param centreFrequency satellite emitter frequency
  63.      * @param date date of the measurement
  64.      * @param fdoa observed value (s)
  65.      * @param sigma theoretical standard deviation
  66.      * @param baseWeight base weight
  67.      * @param satellite satellite related to this measurement
  68.      */
  69.     public FDOA(final GroundStation primeStation, final GroundStation secondStation,
  70.                 final double centreFrequency,
  71.                 final AbsoluteDate date, final double fdoa, final double sigma,
  72.                 final double baseWeight, final ObservableSatellite satellite) {
  73.         super(primeStation, false, date, fdoa, sigma, baseWeight, satellite);

  74.         // add parameter drivers for the secondary station
  75.         addParameterDriver(secondStation.getClockOffsetDriver());
  76.         addParameterDriver(secondStation.getEastOffsetDriver());
  77.         addParameterDriver(secondStation.getNorthOffsetDriver());
  78.         addParameterDriver(secondStation.getZenithOffsetDriver());
  79.         addParameterDriver(secondStation.getPrimeMeridianOffsetDriver());
  80.         addParameterDriver(secondStation.getPrimeMeridianDriftDriver());
  81.         addParameterDriver(secondStation.getPolarOffsetXDriver());
  82.         addParameterDriver(secondStation.getPolarDriftXDriver());
  83.         addParameterDriver(secondStation.getPolarOffsetYDriver());
  84.         addParameterDriver(secondStation.getPolarDriftYDriver());
  85.         this.secondStation = secondStation;
  86.         this.centreFrequency = centreFrequency;
  87.     }

  88.     /** Get the prime ground station, the one that gives the date of the measurement.
  89.      * @return prime ground station
  90.      */
  91.     public GroundStation getPrimeStation() {
  92.         return getStation();
  93.     }

  94.     /** Get the second ground station, the one that gives the measurement.
  95.      * @return second ground station
  96.      */
  97.     public GroundStation getSecondStation() {
  98.         return secondStation;
  99.     }

  100.     /** {@inheritDoc} */
  101.     @Override
  102.     protected EstimatedMeasurementBase<FDOA> theoreticalEvaluationWithoutDerivatives(final int iteration, final int evaluation,
  103.                                                                                      final SpacecraftState[] states) {

  104.         final SpacecraftState state = states[0];

  105.         // coordinates of the spacecraft
  106.         final TimeStampedPVCoordinates pva = state.getPVCoordinates();

  107.         // transform between prime station frame and inertial frame
  108.         // at the real date of measurement, i.e. taking station clock offset into account
  109.         final Transform primeToInert = getStation().getOffsetToInertial(state.getFrame(), getDate(), false);
  110.         final AbsoluteDate measurementDate = primeToInert.getDate();

  111.         // prime station PV in inertial frame at the real date of the measurement
  112.         final TimeStampedPVCoordinates primePV =
  113.                         primeToInert.transformPVCoordinates(new TimeStampedPVCoordinates(measurementDate,
  114.                                                                                          Vector3D.ZERO, Vector3D.ZERO, Vector3D.ZERO));

  115.         // compute downlink delay from emitter to prime receiver
  116.         final double tau1 = signalTimeOfFlight(pva, primePV.getPosition(), measurementDate);

  117.         // elapsed time between state date and signal arrival to the prime receiver
  118.         final double dtMtau1 = measurementDate.durationFrom(state.getDate()) - tau1;

  119.         // satellite state at signal emission
  120.         final SpacecraftState emitterState = state.shiftedBy(dtMtau1);

  121.         // satellite pv at signal emission (re)computed with gradient
  122.         final TimeStampedPVCoordinates emitterPV = pva.shiftedBy(dtMtau1);

  123.         // second station PV in inertial frame at real date of signal reception
  124.         TimeStampedPVCoordinates secondPV;
  125.         // initialize search loop of the reception date by second station
  126.         double tau2 = tau1;
  127.         double delta;
  128.         int count = 0;
  129.         do {
  130.             final double previous = tau2;
  131.             // date of signal arrival on second receiver
  132.             final AbsoluteDate dateAt2 = emitterState.getDate().shiftedBy(previous);
  133.             // transform between second station frame and inertial frame
  134.             // at the date of signal arrival, taking clock offset into account
  135.             final Transform secondToInert = secondStation.getOffsetToInertial(state.getFrame(), dateAt2, false);
  136.             // second receiver position in inertial frame at the real date of signal reception
  137.             secondPV = secondToInert.transformPVCoordinates(new TimeStampedPVCoordinates(secondToInert.getDate(),
  138.                                                                                          Vector3D.ZERO, Vector3D.ZERO, Vector3D.ZERO));
  139.             // downlink delay from emitter to second receiver
  140.             tau2 = linkDelay(emitterPV.getPosition(), secondPV.getPosition());

  141.             // Change in the computed downlink delay
  142.             delta = FastMath.abs(tau2 - previous);
  143.         } while (count++ < 10 && delta >= 2 * FastMath.ulp(tau2));

  144.         // The measured TDOA is (tau1 + clockOffset1) - (tau2 + clockOffset2)
  145.         final double offset1 = getStation().getClockOffsetDriver().getValue(emitterState.getDate());
  146.         final double offset2 = secondStation.getClockOffsetDriver().getValue(emitterState.getDate());
  147.         final double tdoa    = (tau1 + offset1) - (tau2 + offset2);

  148.         // Range-rate sat->primary station
  149.         final EstimatedMeasurementBase<FDOA> evalPrimary = oneWayTheoreticalEvaluation(iteration, evaluation, true,
  150.                                                                                        primePV, emitterPV, emitterState);

  151.         // Range-rate sat->secondary station
  152.         final EstimatedMeasurementBase<FDOA> evalSecondary = oneWayTheoreticalEvaluation(iteration, evaluation, true,
  153.                                                                                          secondPV, emitterPV, emitterState);

  154.         // Evaluate the FDOA value and derivatives
  155.         // -------------------------------------------
  156.         final EstimatedMeasurementBase<FDOA> estimated =
  157.                         new EstimatedMeasurementBase<>(this, iteration, evaluation,
  158.                                                        new SpacecraftState[] {
  159.                                                            emitterState
  160.                                                        },
  161.                                                        new TimeStampedPVCoordinates[] {
  162.                                                            emitterPV,
  163.                                                            tdoa > 0 ? secondPV : primePV,
  164.                                                            tdoa > 0 ? primePV : secondPV
  165.                                                        });

  166.         // set FDOA value
  167.         final double rangeRateToHz = -centreFrequency / Constants.SPEED_OF_LIGHT;
  168.         estimated.setEstimatedValue((evalPrimary.getEstimatedValue()[0] - evalSecondary.getEstimatedValue()[0]) * rangeRateToHz);

  169.         return estimated;

  170.     }

  171.     /** {@inheritDoc} */
  172.     @Override
  173.     protected EstimatedMeasurement<FDOA> theoreticalEvaluation(final int iteration, final int evaluation,
  174.                                                                final SpacecraftState[] states) {

  175.         final SpacecraftState state = states[0];

  176.         // TDOA derivatives are computed with respect to:
  177.         // - Spacecraft state in inertial frame
  178.         // - Prime station parameters
  179.         // - Second station parameters
  180.         // --------------------------
  181.         //  - 0..2 - Position of the spacecraft in inertial frame
  182.         //  - 3..5 - Velocity of the spacecraft in inertial frame
  183.         //  - 6..n - stations' parameters (clock offset, station offsets, pole, prime meridian...)
  184.         int nbParams = 6;
  185.         final Map<String, Integer> indices = new HashMap<>();
  186.         for (ParameterDriver driver : getParametersDrivers()) {
  187.             // we have to check for duplicate keys because primary and secondary station share
  188.             // pole and prime meridian parameters names that must be considered
  189.             // as one set only (they are combined together by the estimation engine)
  190.             if (driver.isSelected()) {
  191.                 for (Span<String> span = driver.getNamesSpanMap().getFirstSpan(); span != null; span = span.next()) {

  192.                     if (!indices.containsKey(span.getData())) {
  193.                         indices.put(span.getData(), nbParams++);
  194.                     }
  195.                 }
  196.             }
  197.         }
  198.         final FieldVector3D<Gradient> zero = FieldVector3D.getZero(GradientField.getField(nbParams));

  199.         // coordinates of the spacecraft as a gradient
  200.         final TimeStampedFieldPVCoordinates<Gradient> pvaG = getCoordinates(state, 0, nbParams);

  201.         // transform between prime station frame and inertial frame
  202.         // at the real date of measurement, i.e. taking station clock offset into account
  203.         final FieldTransform<Gradient> primeToInert =
  204.                         getStation().getOffsetToInertial(state.getFrame(), getDate(), nbParams, indices);
  205.         final FieldAbsoluteDate<Gradient> measurementDateG = primeToInert.getFieldDate();

  206.         // prime station PV in inertial frame at the real date of the measurement
  207.         final TimeStampedFieldPVCoordinates<Gradient> primePV =
  208.                         primeToInert.transformPVCoordinates(new TimeStampedFieldPVCoordinates<>(measurementDateG,
  209.                                                                                                 zero, zero, zero));

  210.         // compute downlink delay from emitter to prime receiver
  211.         final Gradient tau1 = signalTimeOfFlight(pvaG, primePV.getPosition(), measurementDateG);

  212.         // elapsed time between state date and signal arrival to the prime receiver
  213.         final Gradient dtMtau1 = measurementDateG.durationFrom(state.getDate()).subtract(tau1);

  214.         // satellite state at signal emission
  215.         final SpacecraftState emitterState = state.shiftedBy(dtMtau1.getValue());

  216.         // satellite pv at signal emission (re)computed with gradient
  217.         final TimeStampedFieldPVCoordinates<Gradient> emitterPV = pvaG.shiftedBy(dtMtau1);

  218.         // second station PV in inertial frame at real date of signal reception
  219.         TimeStampedFieldPVCoordinates<Gradient> secondPV;
  220.         // initialize search loop of the reception date by second station
  221.         Gradient tau2 = tau1;
  222.         double delta;
  223.         int count = 0;
  224.         do {
  225.             final double previous = tau2.getValue();
  226.             // date of signal arrival on second receiver
  227.             final AbsoluteDate dateAt2 = emitterState.getDate().shiftedBy(previous);
  228.             // transform between second station frame and inertial frame
  229.             // at the date of signal arrival, taking clock offset into account
  230.             final FieldTransform<Gradient> secondToInert =
  231.                             secondStation.getOffsetToInertial(state.getFrame(), dateAt2,
  232.                                                               nbParams, indices);
  233.             // second receiver position in inertial frame at the real date of signal reception
  234.             secondPV = secondToInert.transformPVCoordinates(new TimeStampedFieldPVCoordinates<>(secondToInert.getFieldDate(),
  235.                                                                                                 zero, zero, zero));
  236.             // downlink delay from emitter to second receiver
  237.             tau2 = linkDelay(emitterPV.getPosition(), secondPV.getPosition());

  238.             // Change in the computed downlink delay
  239.             delta = FastMath.abs(tau2.getValue() - previous);
  240.         } while (count++ < 10 && delta >= 2 * FastMath.ulp(tau2.getValue()));

  241.         // The measured TDOA is (tau1 + clockOffset1) - (tau2 + clockOffset2)
  242.         final Gradient offset1 = getStation().getClockOffsetDriver().getValue(nbParams, indices, emitterState.getDate());
  243.         final Gradient offset2 = secondStation.getClockOffsetDriver().getValue(nbParams, indices, emitterState.getDate());
  244.         final Gradient tdoaG   = tau1.add(offset1).subtract(tau2.add(offset2));
  245.         final double tdoa      = tdoaG.getValue();

  246.         // Range-rate sat->primary station
  247.         final EstimatedMeasurement<FDOA> evalPrimary = oneWayTheoreticalEvaluation(iteration, evaluation, true,
  248.                 primePV, emitterPV, emitterState, indices);

  249.         // Range-rate sat->secondary station
  250.         final EstimatedMeasurement<FDOA> evalSecondary = oneWayTheoreticalEvaluation(iteration, evaluation, true,
  251.                 secondPV, emitterPV, emitterState, indices);

  252.         // Evaluate the FDOA value and derivatives
  253.         // -------------------------------------------
  254.         final TimeStampedPVCoordinates pv1 = primePV.toTimeStampedPVCoordinates();
  255.         final TimeStampedPVCoordinates pv2 = secondPV.toTimeStampedPVCoordinates();
  256.         final EstimatedMeasurement<FDOA> estimated =
  257.                         new EstimatedMeasurement<>(this, iteration, evaluation,
  258.                                                    new SpacecraftState[] {
  259.                                                        emitterState
  260.                                                    },
  261.                                                    new TimeStampedPVCoordinates[] {
  262.                                                        emitterPV.toTimeStampedPVCoordinates(),
  263.                                                        tdoa > 0 ? pv2 : pv1,
  264.                                                        tdoa > 0 ? pv1 : pv2
  265.                                                    });

  266.         // set FDOA value
  267.         final double rangeRateToHz = -centreFrequency / Constants.SPEED_OF_LIGHT;
  268.         estimated.setEstimatedValue((evalPrimary.getEstimatedValue()[0] - evalSecondary.getEstimatedValue()[0]) * rangeRateToHz);

  269.         // combine primary and secondary partial derivatives with respect to state
  270.         final double[][] sd1 = evalPrimary.getStateDerivatives(0);
  271.         final double[][] sd2 = evalSecondary.getStateDerivatives(0);
  272.         final double[][] sd  = new double[sd1.length][sd1[0].length];
  273.         for (int i = 0; i < sd.length; ++i) {
  274.             for (int j = 0; j < sd[0].length; ++j) {
  275.                 sd[i][j] = (sd1[i][j] - sd2[i][j]) * rangeRateToHz;
  276.             }
  277.         }
  278.         estimated.setStateDerivatives(0, sd);

  279.         // combine primary and secondary partial derivatives with respect to parameters
  280.         evalPrimary.getDerivativesDrivers().forEach(driver -> {
  281.             for (Span<Double> span = driver.getValueSpanMap().getFirstSpan(); span != null; span = span.next()) {

  282.                 final double[] pd1 = evalPrimary.getParameterDerivatives(driver, span.getStart());
  283.                 final double[] pd2 = evalSecondary.getParameterDerivatives(driver, span.getStart());
  284.                 final double[] pd  = new double[pd1.length];
  285.                 for (int i = 0; i < pd.length; ++i) {
  286.                     pd[i] = (pd1[i] - pd2[i]) * rangeRateToHz;
  287.                 }
  288.                 estimated.setParameterDerivatives(driver, span.getStart(), pd);
  289.             }
  290.         });

  291.         return estimated;

  292.     }

  293.     /** Compute propagation delay on a link.
  294.      * @param emitter  the position of the emitter
  295.      * @param receiver the position of the receiver (same frame as emitter)
  296.      * @return the propagation delay
  297.      */
  298.     private double linkDelay(final Vector3D emitter,
  299.                                final Vector3D receiver) {
  300.         return receiver.distance(emitter) / Constants.SPEED_OF_LIGHT;
  301.     }

  302.     /** Compute propagation delay on a link.
  303.      * @param emitter  the position of the emitter
  304.      * @param receiver the position of the receiver (same frame as emitter)
  305.      * @return the propagation delay
  306.      */
  307.     private Gradient linkDelay(final FieldVector3D<Gradient> emitter,
  308.                                final FieldVector3D<Gradient> receiver) {
  309.         return receiver.distance(emitter).divide(Constants.SPEED_OF_LIGHT);
  310.     }

  311.     /** Evaluate range rate measurement in one-way.
  312.      * @param iteration iteration number
  313.      * @param evaluation evaluations counter
  314.      * @param downlink indicator for downlink leg
  315.      * @param stationPV station coordinates when signal is at station
  316.      * @param transitPV spacecraft coordinates at onboard signal transit
  317.      * @param transitState orbital state at onboard signal transit
  318.      * @return theoretical value for the current leg
  319.      */
  320.     private EstimatedMeasurementBase<FDOA> oneWayTheoreticalEvaluation(final int iteration, final int evaluation, final boolean downlink,
  321.                                                                        final TimeStampedPVCoordinates stationPV,
  322.                                                                        final TimeStampedPVCoordinates transitPV,
  323.                                                                        final SpacecraftState transitState) {

  324.         // prepare the evaluation
  325.         final EstimatedMeasurementBase<FDOA> estimated =
  326.             new EstimatedMeasurementBase<>(this, iteration, evaluation,
  327.                                            new SpacecraftState[] {
  328.                                                transitState
  329.                                            }, new TimeStampedPVCoordinates[] {
  330.                                                downlink ? transitPV : stationPV,
  331.                                                downlink ? stationPV : transitPV
  332.                                            });

  333.         // range rate value
  334.         final Vector3D stationPosition  = stationPV.getPosition();
  335.         final Vector3D relativePosition = stationPosition.subtract(transitPV.getPosition());

  336.         final Vector3D stationVelocity  = stationPV.getVelocity();
  337.         final Vector3D relativeVelocity = stationVelocity.subtract(transitPV.getVelocity());

  338.         // radial direction
  339.         final Vector3D lineOfSight      = relativePosition.normalize();

  340.         // range rate
  341.         final double rangeRate = Vector3D.dotProduct(relativeVelocity, lineOfSight);

  342.         estimated.setEstimatedValue(rangeRate);

  343.         return estimated;

  344.     }
  345.     /** Evaluate range rate measurement in one-way.
  346.      * @param iteration iteration number
  347.      * @param evaluation evaluations counter
  348.      * @param downlink indicator for downlink leg
  349.      * @param stationPV station coordinates when signal is at station
  350.      * @param transitPV spacecraft coordinates at onboard signal transit
  351.      * @param transitState orbital state at onboard signal transit
  352.      * @param indices indices of the estimated parameters in derivatives computations
  353.      * @return theoretical value for the current leg
  354.      */
  355.     private EstimatedMeasurement<FDOA> oneWayTheoreticalEvaluation(final int iteration, final int evaluation, final boolean downlink,
  356.                                                                                 final TimeStampedFieldPVCoordinates<Gradient> stationPV,
  357.                                                                                 final TimeStampedFieldPVCoordinates<Gradient> transitPV,
  358.                                                                                 final SpacecraftState transitState,
  359.                                                                                 final Map<String, Integer> indices) {

  360.         // prepare the evaluation
  361.         final EstimatedMeasurement<FDOA> estimated =
  362.             new EstimatedMeasurement<>(this, iteration, evaluation,
  363.                 new SpacecraftState[] {
  364.                     transitState
  365.                 }, new TimeStampedPVCoordinates[] {
  366.                     (downlink ? transitPV : stationPV).toTimeStampedPVCoordinates(),
  367.                     (downlink ? stationPV : transitPV).toTimeStampedPVCoordinates()
  368.                 });

  369.         // range rate value
  370.         final FieldVector3D<Gradient> stationPosition  = stationPV.getPosition();
  371.         final FieldVector3D<Gradient> relativePosition = stationPosition.subtract(transitPV.getPosition());

  372.         final FieldVector3D<Gradient> stationVelocity  = stationPV.getVelocity();
  373.         final FieldVector3D<Gradient> relativeVelocity = stationVelocity.subtract(transitPV.getVelocity());

  374.         // radial direction
  375.         final FieldVector3D<Gradient> lineOfSight      = relativePosition.normalize();

  376.         // range rate
  377.         final Gradient rangeRate = FieldVector3D.dotProduct(relativeVelocity, lineOfSight);

  378.         estimated.setEstimatedValue(rangeRate.getValue());

  379.         // compute partial derivatives of (rr) with respect to spacecraft state Cartesian coordinates
  380.         final double[] derivatives = rangeRate.getGradient();
  381.         estimated.setStateDerivatives(0, Arrays.copyOfRange(derivatives, 0, 6));

  382.         // set partial derivatives with respect to parameters
  383.         for (final ParameterDriver driver : getParametersDrivers()) {
  384.             for (Span<String> span = driver.getNamesSpanMap().getFirstSpan(); span != null; span = span.next()) {
  385.                 final Integer index = indices.get(span.getData());
  386.                 if (index != null) {
  387.                     estimated.setParameterDerivatives(driver, span.getStart(), derivatives[index]);
  388.                 }
  389.             }
  390.         }

  391.         return estimated;

  392.     }

  393. }