InterSatellitesPhase.java
- /* Copyright 2002-2024 CS GROUP
- * Licensed to CS GROUP (CS) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * CS licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.orekit.estimation.measurements.gnss;
- import java.util.Arrays;
- import java.util.HashMap;
- import java.util.Map;
- import org.hipparchus.analysis.differentiation.Gradient;
- import org.orekit.estimation.measurements.AbstractMeasurement;
- import org.orekit.estimation.measurements.EstimatedMeasurement;
- import org.orekit.estimation.measurements.EstimatedMeasurementBase;
- import org.orekit.estimation.measurements.ObservableSatellite;
- import org.orekit.propagation.SpacecraftState;
- import org.orekit.time.AbsoluteDate;
- import org.orekit.time.FieldAbsoluteDate;
- import org.orekit.utils.Constants;
- import org.orekit.utils.ParameterDriver;
- import org.orekit.utils.TimeSpanMap.Span;
- import org.orekit.utils.TimeStampedFieldPVCoordinates;
- import org.orekit.utils.TimeStampedPVCoordinates;
- /** Phase measurement between two satellites.
- * <p>
- * The measurement is considered to be a signal emitted from
- * a remote satellite and received by a local satellite.
- * Its value is the number of cycles between emission and reception.
- * The motion of both spacecrafts during the signal flight time
- * are taken into account. The date of the measurement corresponds to the
- * reception on ground of the emitted signal.
- * </p>
- * @author Bryan Cazabonne
- * @since 10.3
- */
- public class InterSatellitesPhase extends AbstractMeasurement<InterSatellitesPhase> {
- /** Type of the measurement. */
- public static final String MEASUREMENT_TYPE = "InterSatellitesPhase";
- /** Name for ambiguity driver. */
- public static final String AMBIGUITY_NAME = "ambiguity";
- /** Driver for ambiguity. */
- private final ParameterDriver ambiguityDriver;
- /** Wavelength of the phase observed value [m]. */
- private final double wavelength;
- /** Constructor.
- * @param local satellite which receives the signal and performs the measurement
- * @param remote remote satellite which simply emits the signal
- * @param date date of the measurement
- * @param phase observed value (cycles)
- * @param wavelength phase observed value wavelength (m)
- * @param sigma theoretical standard deviation
- * @param baseWeight base weight
- */
- public InterSatellitesPhase(final ObservableSatellite local,
- final ObservableSatellite remote,
- final AbsoluteDate date, final double phase,
- final double wavelength, final double sigma,
- final double baseWeight) {
- // Call to super constructor
- super(date, phase, sigma, baseWeight, Arrays.asList(local, remote));
- // Initialize phase ambiguity driver
- ambiguityDriver = new ParameterDriver(AMBIGUITY_NAME, 0.0, 1.0,
- Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY);
- // Add parameter drivers
- addParameterDriver(ambiguityDriver);
- addParameterDriver(local.getClockOffsetDriver());
- addParameterDriver(remote.getClockOffsetDriver());
- // Initialize fields
- this.wavelength = wavelength;
- }
- /** Get the wavelength.
- * @return wavelength (m)
- */
- public double getWavelength() {
- return wavelength;
- }
- /** Get the driver for phase ambiguity.
- * @return the driver for phase ambiguity
- */
- public ParameterDriver getAmbiguityDriver() {
- return ambiguityDriver;
- }
- /** {@inheritDoc} */
- @Override
- protected EstimatedMeasurementBase<InterSatellitesPhase> theoreticalEvaluationWithoutDerivatives(final int iteration,
- final int evaluation,
- final SpacecraftState[] states) {
- // Coordinates of both satellites
- final SpacecraftState local = states[0];
- final TimeStampedPVCoordinates pvaL = local.getPVCoordinates();
- final SpacecraftState remote = states[1];
- final TimeStampedPVCoordinates pvaR = remote.getPVCoordinates();
- // Compute propagation times
- // Downlink delay
- final double dtl = getSatellites().get(0).getClockOffsetDriver().getValue(AbsoluteDate.ARBITRARY_EPOCH);
- final AbsoluteDate arrivalDate = getDate().shiftedBy(-dtl);
- final TimeStampedPVCoordinates s1Downlink = pvaL.shiftedBy(arrivalDate.durationFrom(pvaL.getDate()));
- final double tauD = signalTimeOfFlight(pvaR, s1Downlink.getPosition(), arrivalDate);
- // Transit state
- final double delta = getDate().durationFrom(remote.getDate());
- final double deltaMTauD = delta - tauD;
- // prepare the evaluation
- final EstimatedMeasurementBase<InterSatellitesPhase> estimatedPhase =
- new EstimatedMeasurementBase<>(this, iteration, evaluation,
- new SpacecraftState[] {
- local.shiftedBy(deltaMTauD),
- remote.shiftedBy(deltaMTauD)
- }, new TimeStampedPVCoordinates[] {
- remote.shiftedBy(delta - tauD).getPVCoordinates(),
- local.shiftedBy(delta).getPVCoordinates()
- });
- // Clock offsets
- final double dtr = getSatellites().get(1).getClockOffsetDriver().getValue(AbsoluteDate.ARBITRARY_EPOCH);
- // Phase value
- final double cOverLambda = Constants.SPEED_OF_LIGHT / wavelength;
- final double ambiguity = ambiguityDriver.getValue(AbsoluteDate.ARBITRARY_EPOCH);
- final double phase = (tauD + dtl - dtr) * cOverLambda + ambiguity;
- estimatedPhase.setEstimatedValue(phase);
- // Return the estimated measurement
- return estimatedPhase;
- }
- /** {@inheritDoc} */
- @Override
- protected EstimatedMeasurement<InterSatellitesPhase> theoreticalEvaluation(final int iteration,
- final int evaluation,
- final SpacecraftState[] states) {
- // Phase derivatives are computed with respect to spacecrafts states in inertial frame
- // ----------------------
- //
- // Parameters:
- // - 0..2 - Position of the receiver satellite in inertial frame
- // - 3..5 - Velocity of the receiver satellite in inertial frame
- // - 6..8 - Position of the remote satellite in inertial frame
- // - 9..11 - Velocity of the remote satellite in inertial frame
- // - 12.. - Measurement parameters: ambiguity, local clock offset, remote clock offset...
- int nbParams = 12;
- final Map<String, Integer> indices = new HashMap<>();
- for (ParameterDriver phaseMeasurementDriver : getParametersDrivers()) {
- if (phaseMeasurementDriver.isSelected()) {
- for (Span<String> span = phaseMeasurementDriver.getNamesSpanMap().getFirstSpan(); span != null; span = span.next()) {
- indices.put(span.getData(), nbParams++);
- }
- }
- }
- // Coordinates of both satellites
- final SpacecraftState local = states[0];
- final TimeStampedFieldPVCoordinates<Gradient> pvaL = getCoordinates(local, 0, nbParams);
- final SpacecraftState remote = states[1];
- final TimeStampedFieldPVCoordinates<Gradient> pvaR = getCoordinates(remote, 6, nbParams);
- // Compute propagation times
- // Downlink delay
- final Gradient dtl = getSatellites().get(0).getClockOffsetDriver().getValue(nbParams, indices, AbsoluteDate.ARBITRARY_EPOCH);
- final FieldAbsoluteDate<Gradient> arrivalDate = new FieldAbsoluteDate<>(getDate(), dtl.negate());
- final TimeStampedFieldPVCoordinates<Gradient> s1Downlink =
- pvaL.shiftedBy(arrivalDate.durationFrom(pvaL.getDate()));
- final Gradient tauD = signalTimeOfFlight(pvaR, s1Downlink.getPosition(), arrivalDate);
- // Transit state
- final double delta = getDate().durationFrom(remote.getDate());
- final Gradient deltaMTauD = tauD.negate().add(delta);
- // prepare the evaluation
- final EstimatedMeasurement<InterSatellitesPhase> estimatedPhase =
- new EstimatedMeasurement<>(this, iteration, evaluation,
- new SpacecraftState[] {
- local.shiftedBy(deltaMTauD.getValue()),
- remote.shiftedBy(deltaMTauD.getValue())
- }, new TimeStampedPVCoordinates[] {
- remote.shiftedBy(delta - tauD.getValue()).getPVCoordinates(),
- local.shiftedBy(delta).getPVCoordinates()
- });
- // Clock offsets
- final Gradient dtr = getSatellites().get(1).getClockOffsetDriver().getValue(nbParams, indices, AbsoluteDate.ARBITRARY_EPOCH);
- // Phase value
- final double cOverLambda = Constants.SPEED_OF_LIGHT / wavelength;
- final Gradient ambiguity = ambiguityDriver.getValue(nbParams, indices, AbsoluteDate.ARBITRARY_EPOCH);
- final Gradient phase = tauD.add(dtl).subtract(dtr).multiply(cOverLambda).add(ambiguity);
- estimatedPhase.setEstimatedValue(phase.getValue());
- // Range partial derivatives with respect to states
- final double[] derivatives = phase.getGradient();
- estimatedPhase.setStateDerivatives(0, Arrays.copyOfRange(derivatives, 0, 6));
- estimatedPhase.setStateDerivatives(1, Arrays.copyOfRange(derivatives, 6, 12));
- // Set partial derivatives with respect to parameters
- for (final ParameterDriver driver : getParametersDrivers()) {
- for (Span<String> span = driver.getNamesSpanMap().getFirstSpan(); span != null; span = span.next()) {
- final Integer index = indices.get(span.getData());
- if (index != null) {
- estimatedPhase.setParameterDerivatives(driver, span.getStart(), derivatives[index]);
- }
- }
- }
- // Return the estimated measurement
- return estimatedPhase;
- }
- }