SingleBodyRelativeAttraction.java

  1. /* Copyright 2002-2024 CS GROUP
  2.  * Licensed to CS GROUP (CS) under one or more
  3.  * contributor license agreements.  See the NOTICE file distributed with
  4.  * this work for additional information regarding copyright ownership.
  5.  * CS licenses this file to You under the Apache License, Version 2.0
  6.  * (the "License"); you may not use this file except in compliance with
  7.  * the License.  You may obtain a copy of the License at
  8.  *
  9.  *   http://www.apache.org/licenses/LICENSE-2.0
  10.  *
  11.  * Unless required by applicable law or agreed to in writing, software
  12.  * distributed under the License is distributed on an "AS IS" BASIS,
  13.  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  14.  * See the License for the specific language governing permissions and
  15.  * limitations under the License.
  16.  */
  17. package org.orekit.forces.gravity;

  18. import java.util.Collections;
  19. import java.util.List;

  20. import org.hipparchus.CalculusFieldElement;
  21. import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
  22. import org.hipparchus.geometry.euclidean.threed.Vector3D;
  23. import org.hipparchus.util.FastMath;
  24. import org.orekit.bodies.CelestialBodies;
  25. import org.orekit.bodies.CelestialBody;
  26. import org.orekit.forces.ForceModel;
  27. import org.orekit.propagation.FieldSpacecraftState;
  28. import org.orekit.propagation.SpacecraftState;
  29. import org.orekit.utils.FieldPVCoordinates;
  30. import org.orekit.utils.PVCoordinates;
  31. import org.orekit.utils.ParameterDriver;

  32. /** Body attraction force model computed as relative acceleration towards frame center.
  33.  * @author Luc Maisonabe
  34.  * @author Julio Hernanz
  35.  */
  36. public class SingleBodyRelativeAttraction implements ForceModel {

  37.     /** Suffix for parameter name for attraction coefficient enabling Jacobian processing. */
  38.     public static final String ATTRACTION_COEFFICIENT_SUFFIX = " attraction coefficient";

  39.     /** Central attraction scaling factor.
  40.      * <p>
  41.      * We use a power of 2 to avoid numeric noise introduction
  42.      * in the multiplications/divisions sequences.
  43.      * </p>
  44.      */
  45.     private static final double MU_SCALE = FastMath.scalb(1.0, 32);

  46.     /** Drivers for body attraction coefficient. */
  47.     private final ParameterDriver gmDriver;

  48.     /** The body to consider. */
  49.     private final CelestialBody body;

  50.     /** Simple constructor.
  51.      * @param body the body to consider
  52.      * (ex: {@link CelestialBodies#getSun()} or
  53.      * {@link CelestialBodies#getMoon()})
  54.      */
  55.     public SingleBodyRelativeAttraction(final CelestialBody body) {
  56.         gmDriver = new ParameterDriver(body.getName() + ATTRACTION_COEFFICIENT_SUFFIX,
  57.                                        body.getGM(), MU_SCALE,
  58.                                        0.0, Double.POSITIVE_INFINITY);

  59.         this.body = body;
  60.     }

  61.     /** {@inheritDoc} */
  62.     @Override
  63.     public boolean dependsOnPositionOnly() {
  64.         return true;
  65.     }

  66.     /** {@inheritDoc} */
  67.     public Vector3D acceleration(final SpacecraftState s, final double[] parameters) {

  68.         // compute bodies separation vectors and squared norm
  69.         final PVCoordinates bodyPV   = body.getPVCoordinates(s.getDate(), s.getFrame());
  70.         final Vector3D satToBody     = bodyPV.getPosition().subtract(s.getPosition());
  71.         final double r2Sat           = satToBody.getNormSq();

  72.         // compute relative acceleration
  73.         final double gm = parameters[0];
  74.         final double a = gm / r2Sat;
  75.         return new Vector3D(a, satToBody.normalize()).add(bodyPV.getAcceleration());

  76.     }

  77.     /** {@inheritDoc} */
  78.     public <T extends CalculusFieldElement<T>> FieldVector3D<T> acceleration(final FieldSpacecraftState<T> s,
  79.                                                                          final T[] parameters) {

  80.         // compute bodies separation vectors and squared norm
  81.         final FieldPVCoordinates<T> bodyPV = body.getPVCoordinates(s.getDate(), s.getFrame());
  82.         final FieldVector3D<T> satToBody   = bodyPV.getPosition().subtract(s.getPosition());
  83.         final T                r2Sat       = satToBody.getNormSq();

  84.         // compute relative acceleration
  85.         final T gm = parameters[0];
  86.         final T a  = gm.divide(r2Sat);
  87.         return new FieldVector3D<>(a, satToBody.normalize()).add(bodyPV.getAcceleration());

  88.     }

  89.     /** {@inheritDoc} */
  90.     public List<ParameterDriver> getParametersDrivers() {
  91.         return Collections.singletonList(gmDriver);
  92.     }

  93. }