PhaseIonosphericDelayModifier.java

  1. /* Copyright 2002-2024 CS GROUP
  2.  * Licensed to CS GROUP (CS) under one or more
  3.  * contributor license agreements.  See the NOTICE file distributed with
  4.  * this work for additional information regarding copyright ownership.
  5.  * The ASF licenses this file to You under the Apache License, Version 2.0
  6.  * (the "License"); you may not use this file except in compliance with
  7.  * the License.  You may obtain a copy of the License at
  8.  *
  9.  *      http://www.apache.org/licenses/LICENSE-2.0
  10.  *
  11.  * Unless required by applicable law or agreed to in writing, software
  12.  * distributed under the License is distributed on an "AS IS" BASIS,
  13.  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  14.  * See the License for the specific language governing permissions and
  15.  * limitations under the License.
  16.  */
  17. package org.orekit.estimation.measurements.modifiers;

  18. import java.util.Arrays;
  19. import java.util.List;

  20. import org.hipparchus.CalculusFieldElement;
  21. import org.hipparchus.analysis.differentiation.Gradient;
  22. import org.orekit.attitudes.FrameAlignedProvider;
  23. import org.orekit.estimation.measurements.EstimatedMeasurement;
  24. import org.orekit.estimation.measurements.EstimatedMeasurementBase;
  25. import org.orekit.estimation.measurements.EstimationModifier;
  26. import org.orekit.estimation.measurements.GroundStation;
  27. import org.orekit.estimation.measurements.gnss.Phase;
  28. import org.orekit.frames.TopocentricFrame;
  29. import org.orekit.models.earth.ionosphere.IonosphericModel;
  30. import org.orekit.propagation.FieldSpacecraftState;
  31. import org.orekit.propagation.SpacecraftState;
  32. import org.orekit.utils.Constants;
  33. import org.orekit.utils.Differentiation;
  34. import org.orekit.utils.ParameterDriver;
  35. import org.orekit.utils.ParameterFunction;
  36. import org.orekit.utils.TimeSpanMap.Span;

  37. /**
  38.  * Class modifying theoretical phase measurement with ionospheric delay.
  39.  * The effect of ionospheric correction on the phase is directly computed
  40.  * through the computation of the ionospheric delay.
  41.  * @author David Soulard
  42.  * @author Bryan Cazabonne
  43.  * @since 10.2
  44.  */
  45. public class PhaseIonosphericDelayModifier implements EstimationModifier<Phase> {

  46.     /** Ionospheric delay model. */
  47.     private final IonosphericModel ionoModel;

  48.     /** Frequency [Hz]. */
  49.     private final double frequency;

  50.     /** Constructor.
  51.      *
  52.      * @param model  Ionospheric delay model appropriate for the current range measurement method.
  53.      * @param freq frequency of the signal in Hz
  54.      */
  55.     public PhaseIonosphericDelayModifier(final IonosphericModel model,
  56.                                          final double freq) {
  57.         ionoModel = model;
  58.         frequency = freq;
  59.     }

  60.     /** Compute the measurement error due to ionosphere.
  61.      * @param station station
  62.      * @param state spacecraft state
  63.      * @return the measurement error due to ionosphere
  64.      */
  65.     private double phaseErrorIonosphericModel(final GroundStation station,
  66.                                               final SpacecraftState state) {

  67.         // Base frame associated with the station
  68.         final TopocentricFrame baseFrame = station.getBaseFrame();
  69.         final double wavelength  = Constants.SPEED_OF_LIGHT / frequency;
  70.         // delay in meters
  71.         final double delay = ionoModel.pathDelay(state, baseFrame, frequency, ionoModel.getParameters(state.getDate()));
  72.         return delay / wavelength;
  73.     }

  74.     /** Compute the measurement error due to ionosphere.
  75.      * @param <T> type of the element
  76.      * @param station station
  77.      * @param state spacecraft state
  78.      * @param parameters ionospheric model parameters at state date
  79.      * @return the measurement error due to ionosphere
  80.      */
  81.     private <T extends CalculusFieldElement<T>> T phaseErrorIonosphericModel(final GroundStation station,
  82.                                                                              final FieldSpacecraftState<T> state,
  83.                                                                              final T[] parameters) {

  84.         // Base frame associated with the station
  85.         final TopocentricFrame baseFrame = station.getBaseFrame();
  86.         final double wavelength  = Constants.SPEED_OF_LIGHT / frequency;
  87.         // delay in meters
  88.         final T delay = ionoModel.pathDelay(state, baseFrame, frequency, parameters);
  89.         return delay.divide(wavelength);
  90.     }

  91.     /** Compute the Jacobian of the delay term wrt state using
  92.     * automatic differentiation.
  93.     *
  94.     * @param derivatives ionospheric delay derivatives
  95.     * @param freeStateParameters dimension of the state.
  96.     *
  97.     * @return Jacobian of the delay wrt state
  98.     */
  99.     private double[][] phaseErrorJacobianState(final double[] derivatives, final int freeStateParameters) {
  100.         final double[][] finiteDifferencesJacobian = new double[1][6];
  101.         System.arraycopy(derivatives, 0, finiteDifferencesJacobian[0], 0, freeStateParameters);
  102.         return finiteDifferencesJacobian;
  103.     }


  104.     /** Compute the derivative of the delay term wrt parameters.
  105.      *
  106.      * @param station ground station
  107.      * @param driver driver for the station offset parameter
  108.      * @param state spacecraft state
  109.      * @return derivative of the delay wrt station offset parameter
  110.      */
  111.     private double phaseErrorParameterDerivative(final GroundStation station,
  112.                                                  final ParameterDriver driver,
  113.                                                  final SpacecraftState state) {
  114.         final ParameterFunction phaseError = (parameterDriver, date) -> phaseErrorIonosphericModel(station, state);
  115.         final ParameterFunction phaseErrorDerivative =
  116.                         Differentiation.differentiate(phaseError, 3, 10.0 * driver.getScale());
  117.         return phaseErrorDerivative.value(driver, state.getDate());

  118.     }

  119.     /** Compute the derivative of the delay term wrt parameters using
  120.     * automatic differentiation.
  121.     *
  122.     * @param derivatives ionospheric delay derivatives
  123.     * @param freeStateParameters dimension of the state.
  124.     * @return derivative of the delay wrt ionospheric model parameters
  125.     */
  126.     private double[] phaseErrorParameterDerivative(final double[] derivatives, final int freeStateParameters) {
  127.         // 0 ... freeStateParameters - 1 -> derivatives of the delay wrt state
  128.         // freeStateParameters ... n     -> derivatives of the delay wrt ionospheric parameters
  129.         return Arrays.copyOfRange(derivatives, freeStateParameters, derivatives.length);
  130.     }

  131.     /** {@inheritDoc} */
  132.     @Override
  133.     public List<ParameterDriver> getParametersDrivers() {
  134.         return ionoModel.getParametersDrivers();
  135.     }

  136.     @Override
  137.     public void modifyWithoutDerivatives(final EstimatedMeasurementBase<Phase> estimated) {

  138.         final Phase           measurement = estimated.getObservedMeasurement();
  139.         final GroundStation   station     = measurement.getStation();
  140.         final SpacecraftState state       = estimated.getStates()[0];

  141.         // Update estimated value taking into account the ionospheric delay.
  142.         // The ionospheric delay is directly subtracted to the phase.
  143.         final double[] newValue = estimated.getEstimatedValue();
  144.         final double delay = phaseErrorIonosphericModel(station, state);
  145.         newValue[0] = newValue[0] - delay;
  146.         estimated.modifyEstimatedValue(this, newValue);

  147.     }

  148.     @Override
  149.     public void modify(final EstimatedMeasurement<Phase> estimated) {

  150.         final Phase           measurement = estimated.getObservedMeasurement();
  151.         final GroundStation   station     = measurement.getStation();
  152.         final SpacecraftState state       = estimated.getStates()[0];

  153.         // Compute ionospheric delay (the division by the wavelength is performed)
  154.         final ModifierGradientConverter converter =
  155.                         new ModifierGradientConverter(state, 6, new FrameAlignedProvider(state.getFrame()));
  156.         final FieldSpacecraftState<Gradient> gState = converter.getState(ionoModel);
  157.         final Gradient[] gParameters = converter.getParametersAtStateDate(gState, ionoModel);
  158.         final Gradient gDelay = phaseErrorIonosphericModel(station, gState, gParameters);
  159.         final double[] derivatives = gDelay.getGradient();

  160.         // Update state derivatives
  161.         final double[][] djac = phaseErrorJacobianState(derivatives, converter.getFreeStateParameters());
  162.         final double[][] stateDerivatives = estimated.getStateDerivatives(0);
  163.         for (int irow = 0; irow < stateDerivatives.length; ++irow) {
  164.             for (int jcol = 0; jcol < stateDerivatives[0].length; ++jcol) {
  165.                 stateDerivatives[irow][jcol] -= djac[irow][jcol];
  166.             }
  167.         }
  168.         estimated.setStateDerivatives(0, stateDerivatives);

  169.         // Update ionospheric parameter derivatives
  170.         int index = 0;
  171.         for (final ParameterDriver driver : getParametersDrivers()) {
  172.             if (driver.isSelected()) {
  173.                 for (Span<String> span = driver.getNamesSpanMap().getFirstSpan(); span != null; span = span.next()) {
  174.                     // update estimated derivatives with derivative of the modification wrt ionospheric parameters
  175.                     double parameterDerivative = estimated.getParameterDerivatives(driver, span.getStart())[0];
  176.                     final double[] dDelaydP    = phaseErrorParameterDerivative(derivatives, converter.getFreeStateParameters());
  177.                     parameterDerivative -= dDelaydP[index];
  178.                     estimated.setParameterDerivatives(driver, span.getStart(), parameterDerivative);
  179.                     index = index + 1;
  180.                 }
  181.             }

  182.         }

  183.         // Update station parameter derivatives
  184.         for (final ParameterDriver driver : Arrays.asList(station.getClockOffsetDriver(),
  185.                                                           station.getEastOffsetDriver(),
  186.                                                           station.getNorthOffsetDriver(),
  187.                                                           station.getZenithOffsetDriver())) {
  188.             if (driver.isSelected()) {
  189.                 for (Span<String> span = driver.getNamesSpanMap().getFirstSpan(); span != null; span = span.next()) {
  190.                     // update estimated derivatives with derivative of the modification wrt station parameters
  191.                     double parameterDerivative = estimated.getParameterDerivatives(driver, span.getStart())[0];
  192.                     parameterDerivative -= phaseErrorParameterDerivative(station, driver, state);
  193.                     estimated.setParameterDerivatives(driver, span.getStart(), parameterDerivative);
  194.                 }
  195.             }
  196.         }

  197.         // Update estimated value taking into account the ionospheric delay.
  198.         modifyWithoutDerivatives(estimated);

  199.     }

  200. }