FieldNeQuickParameters.java
- /* Copyright 2002-2024 CS GROUP
- * Licensed to CS GROUP (CS) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * CS licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.orekit.models.earth.ionosphere;
- import org.hipparchus.Field;
- import org.hipparchus.CalculusFieldElement;
- import org.hipparchus.util.FastMath;
- import org.hipparchus.util.FieldSinCos;
- import org.hipparchus.util.MathArrays;
- import org.hipparchus.util.SinCos;
- import org.orekit.time.DateComponents;
- import org.orekit.time.DateTimeComponents;
- import org.orekit.time.TimeComponents;
- /**
- * This class perfoms the computation of the parameters used by the NeQuick model.
- *
- * @author Bryan Cazabonne
- *
- * @see "European Union (2016). European GNSS (Galileo) Open Service-Ionospheric Correction
- * Algorithm for Galileo Single Frequency Users. 1.2."
- *
- * @since 10.1
- */
- class FieldNeQuickParameters <T extends CalculusFieldElement<T>> {
- /** Solar zenith angle at day night transition, degrees. */
- private static final double X0 = 86.23292796211615;
- /** F2 layer maximum density. */
- private final T nmF2;
- /** F2 layer maximum density height [km]. */
- private final T hmF2;
- /** F1 layer maximum density height [km]. */
- private final T hmF1;
- /** E layer maximum density height [km]. */
- private final T hmE;
- /** F2 layer bottom thickness parameter [km]. */
- private final T b2Bot;
- /** F1 layer top thickness parameter [km]. */
- private final T b1Top;
- /** F1 layer bottom thickness parameter [km]. */
- private final T b1Bot;
- /** E layer top thickness parameter [km]. */
- private final T beTop;
- /** E layer bottom thickness parameter [km]. */
- private final T beBot;
- /** topside thickness parameter [km]. */
- private final T h0;
- /** Layer amplitudes. */
- private final T[] amplitudes;
- /**
- * Build a new instance.
- * @param field field of the elements
- * @param dateTime current date time components
- * @param f2 F2 coefficients used by the F2 layer
- * @param fm3 Fm3 coefficients used by the F2 layer
- * @param latitude latitude of a point along the integration path, in radians
- * @param longitude longitude of a point along the integration path, in radians
- * @param alpha effective ionisation level coefficients
- * @param modipGrip modip grid
- */
- FieldNeQuickParameters(final Field<T> field, final DateTimeComponents dateTime, final double[][][] f2,
- final double[][][] fm3, final T latitude, final T longitude,
- final double[] alpha, final double[][] modipGrip) {
- // Zero
- final T zero = field.getZero();
- // MODIP in degrees
- final T modip = computeMODIP(latitude, longitude, modipGrip);
- // Effective ionisation level Az
- final T az = computeAz(modip, alpha);
- // Effective sunspot number (Eq. 19)
- final T azr = FastMath.sqrt(az.subtract(63.7).multiply(1123.6).add(167273.0)).subtract(408.99);
- // Date and Time components
- final DateComponents date = dateTime.getDate();
- final TimeComponents time = dateTime.getTime();
- // Hours
- final double hours = time.getSecondsInUTCDay() / 3600.0;
- // Effective solar zenith angle in radians
- final T xeff = computeEffectiveSolarAngle(date.getMonth(), hours, latitude, longitude);
- // Coefficients for F2 layer parameters
- // Compute the array of interpolated coefficients for foF2 (Eq. 44)
- final T[][] af2 = MathArrays.buildArray(field, 76, 13);
- for (int j = 0; j < 76; j++) {
- for (int k = 0; k < 13; k++ ) {
- af2[j][k] = azr.multiply(0.01).negate().add(1.0).multiply(f2[0][j][k]).add(azr.multiply(0.01).multiply(f2[1][j][k]));
- }
- }
- // Compute the array of interpolated coefficients for M(3000)F2 (Eq. 46)
- final T[][] am3 = MathArrays.buildArray(field, 49, 9);
- for (int j = 0; j < 49; j++) {
- for (int k = 0; k < 9; k++ ) {
- am3[j][k] = azr.multiply(0.01).negate().add(1.0).multiply(fm3[0][j][k]).add(azr.multiply(0.01).multiply(fm3[1][j][k]));
- }
- }
- // E layer maximum density height in km (Eq. 78)
- this.hmE = field.getZero().newInstance(120.0);
- // E layer critical frequency in MHz
- final T foE = computefoE(date.getMonth(), az, xeff, latitude);
- // E layer maximum density in 10^11 m-3 (Eq. 36)
- final T nmE = foE.multiply(foE).multiply(0.124);
- // Time argument (Eq. 49)
- final double t = FastMath.toRadians(15 * hours) - FastMath.PI;
- // Compute Fourier time series for foF2 and M(3000)F2
- final T[] cf2 = computeCF2(field, af2, t);
- final T[] cm3 = computeCm3(field, am3, t);
- // F2 layer critical frequency in MHz
- final T foF2 = computefoF2(field, modip, cf2, latitude, longitude);
- // Maximum Usable Frequency factor
- final T mF2 = computeMF2(field, modip, cm3, latitude, longitude);
- // F2 layer maximum density in 10^11 m-3
- this.nmF2 = foF2.multiply(foF2).multiply(0.124);
- // F2 layer maximum density height in km
- this.hmF2 = computehmF2(field, foE, foF2, mF2);
- // F1 layer critical frequency in MHz
- final T foF1 = computefoF1(field, foE, foF2);
- // F1 layer maximum density in 10^11 m-3
- final T nmF1;
- if (foF1.getReal() <= 0.0 && foE.getReal() > 2.0) {
- final T foEpopf = foE.add(0.5);
- nmF1 = foEpopf.multiply(foEpopf).multiply(0.124);
- } else {
- nmF1 = foF1.multiply(foF1).multiply(0.124);
- }
- // F1 layer maximum density height in km
- this.hmF1 = hmF2.add(hmE).multiply(0.5);
- // Thickness parameters (Eq. 85 to 89)
- final T a = clipExp(FastMath.log(foF2.multiply(foF2)).multiply(0.857).add(FastMath.log(mF2).multiply(2.02)).add(-3.467)).multiply(0.01);
- this.b2Bot = nmF2.divide(a).multiply(0.385);
- this.b1Top = hmF2.subtract(hmF1).multiply(0.3);
- this.b1Bot = hmF1.subtract(hmE).multiply(0.5);
- this.beTop = FastMath.max(b1Bot, zero.newInstance(7.0));
- this.beBot = zero.newInstance(5.0);
- // Layer amplitude coefficients
- this.amplitudes = computeLayerAmplitudes(field, nmE, nmF1, foF1);
- // Topside thickness parameter
- this.h0 = computeH0(field, date.getMonth(), azr);
- }
- /**
- * Get the F2 layer maximum density.
- * @return nmF2
- */
- public T getNmF2() {
- return nmF2;
- }
- /**
- * Get the F2 layer maximum density height.
- * @return hmF2 in km
- */
- public T getHmF2() {
- return hmF2;
- }
- /**
- * Get the F1 layer maximum density height.
- * @return hmF1 in km
- */
- public T getHmF1() {
- return hmF1;
- }
- /**
- * Get the E layer maximum density height.
- * @return hmE in km
- */
- public T getHmE() {
- return hmE;
- }
- /**
- * Get the F2 layer thickness parameter (bottom).
- * @return B2Bot in km
- */
- public T getB2Bot() {
- return b2Bot;
- }
- /**
- * Get the F1 layer thickness parameter (top).
- * @return B1Top in km
- */
- public T getB1Top() {
- return b1Top;
- }
- /**
- * Get the F1 layer thickness parameter (bottom).
- * @return B1Bot in km
- */
- public T getB1Bot() {
- return b1Bot;
- }
- /**
- * Get the E layer thickness parameter (bottom).
- * @return BeBot in km
- */
- public T getBEBot() {
- return beBot;
- }
- /**
- * Get the E layer thickness parameter (top).
- * @return BeTop in km
- */
- public T getBETop() {
- return beTop;
- }
- /**
- * Get the F2, F1 and E layer amplitudes.
- * <p>
- * The resulting element is an array having the following form:
- * <ul>
- * <li>double[0] = A1 → F2 layer amplitude
- * <li>double[1] = A2 → F1 layer amplitude
- * <li>double[2] = A3 → E layer amplitude
- * </ul>
- * @return layer amplitudes
- */
- public T[] getLayerAmplitudes() {
- return amplitudes.clone();
- }
- /**
- * Get the topside thickness parameter H0.
- * @return H0 in km
- */
- public T getH0() {
- return h0;
- }
- /**
- * Computes the value of the modified dip latitude (MODIP) for the
- * given latitude and longitude.
- *
- * @param lat receiver latitude, radians
- * @param lon receiver longitude, radians
- * @param stModip modip grid
- * @return the MODIP in degrees
- */
- private T computeMODIP(final T lat, final T lon, final double[][] stModip) {
- // Zero
- final T zero = lat.getField().getZero();
- // For the MODIP computation, the latitude and longitude have to be converted in degrees
- final T latitude = FastMath.toDegrees(lat);
- final T longitude = FastMath.toDegrees(lon);
- // Extreme cases
- if (latitude.getReal() == 90.0 || latitude.getReal() == -90.0) {
- return latitude;
- }
- // Auxiliary parameter l (Eq. 6 to 8)
- final int lF = (int) ((longitude.getReal() + 180) * 0.1);
- int l = lF - 2;
- if (l < -2) {
- l += 36;
- } else if (l > 33) {
- l -= 36;
- }
- // Auxiliary parameter a (Eq. 9 to 11)
- final T a = latitude.add(90).multiply(0.2).add(1.0);
- final T aF = FastMath.floor(a);
- // Eq. 10
- final T x = a.subtract(aF);
- // Eq. 11
- final int i = (int) aF.getReal() - 2;
- // zi coefficients (Eq. 12 and 13)
- final T z1 = interpolate(zero.add(stModip[i + 1][l + 2]), zero.add(stModip[i + 2][l + 2]),
- zero.add(stModip[i + 3][l + 2]), zero.add(stModip[i + 4][l + 2]), x);
- final T z2 = interpolate(zero.add(stModip[i + 1][l + 3]), zero.add(stModip[i + 2][l + 3]),
- zero.add(stModip[i + 3][l + 3]), zero.add(stModip[i + 4][l + 3]), x);
- final T z3 = interpolate(zero.add(stModip[i + 1][l + 4]), zero.add(stModip[i + 2][l + 4]),
- zero.add(stModip[i + 3][l + 4]), zero.add(stModip[i + 4][l + 4]), x);
- final T z4 = interpolate(zero.add(stModip[i + 1][l + 5]), zero.add(stModip[i + 2][l + 5]),
- zero.add(stModip[i + 3][l + 5]), zero.add(stModip[i + 4][l + 5]), x);
- // Auxiliary parameter b (Eq. 14 and 15)
- final T b = longitude.add(180).multiply(0.1);
- final T bF = FastMath.floor(b);
- final T y = b.subtract(bF);
- // MODIP (Ref Eq. 16)
- final T modip = interpolate(z1, z2, z3, z4, y);
- return modip;
- }
- /**
- * This method computes the effective ionisation level Az.
- * <p>
- * This parameter is used for the computation of the Total Electron Content (TEC).
- * </p>
- * @param modip modified dip latitude (MODIP) in degrees
- * @param alpha effective ionisation level coefficients
- * @return the ionisation level Az
- */
- private T computeAz(final T modip, final double[] alpha) {
- // Field
- final Field<T> field = modip.getField();
- // Zero
- final T zero = field.getZero();
- // Particular condition (Eq. 17)
- if (alpha[0] == 0.0 && alpha[1] == 0.0 && alpha[2] == 0.0) {
- return zero.newInstance(63.7);
- }
- // Az = a0 + modip * a1 + modip^2 * a2 (Eq. 18)
- T az = modip.multiply(alpha[2]).add(alpha[1]).multiply(modip).add(alpha[0]);
- // If Az < 0 -> Az = 0
- az = FastMath.max(zero, az);
- // If Az > 400 -> Az = 400
- az = FastMath.min(zero.newInstance(400.0), az);
- return az;
- }
- /**
- * This method computes the effective solar zenith angle.
- * <p>
- * The effective solar zenith angle is compute as a function of the
- * solar zenith angle and the solar zenith angle at day night transition.
- * </p>
- * @param month current month of the year
- * @param hours universal time (hours)
- * @param latitude in radians
- * @param longitude in radians
- * @return the effective solar zenith angle, radians
- */
- private T computeEffectiveSolarAngle(final int month,
- final double hours,
- final T latitude,
- final T longitude) {
- // Zero
- final T zero = latitude.getField().getZero();
- // Local time (Eq.4)
- final T lt = longitude.divide(FastMath.toRadians(15.0)).add(hours);
- // Day of year at the middle of the month (Eq. 20)
- final double dy = 30.5 * month - 15.0;
- // Time (Eq. 21)
- final double t = dy + (18 - hours) / 24;
- // Arguments am and al (Eq. 22 and 23)
- final double am = FastMath.toRadians(0.9856 * t - 3.289);
- final double al = am + FastMath.toRadians(1.916 * FastMath.sin(am) + 0.020 * FastMath.sin(2.0 * am) + 282.634);
- // Sine and cosine of solar declination (Eq. 24 and 25)
- final double sDec = 0.39782 * FastMath.sin(al);
- final double cDec = FastMath.sqrt(1. - sDec * sDec);
- // Solar zenith angle, deg (Eq. 26 and 27)
- final FieldSinCos<T> scLat = FastMath.sinCos(latitude);
- final T coef = lt.negate().add(12.0).multiply(FastMath.PI / 12);
- final T cZenith = scLat.sin().multiply(sDec).add(scLat.cos().multiply(cDec).multiply(FastMath.cos(coef)));
- final T angle = FastMath.atan2(FastMath.sqrt(cZenith.multiply(cZenith).negate().add(1.0)), cZenith);
- final T x = FastMath.toDegrees(angle);
- // Effective solar zenith angle (Eq. 28)
- final T xeff = join(clipExp(x.multiply(0.2).negate().add(20.0)).multiply(0.24).negate().add(90.0), x,
- zero.newInstance(12.0), x.subtract(X0));
- return FastMath.toRadians(xeff);
- }
- /**
- * This method computes the E layer critical frequency at a given location.
- * @param month current month
- * @param az ffective ionisation level
- * @param xeff effective solar zenith angle in radians
- * @param latitude latitude in radians
- * @return the E layer critical frequency at a given location in MHz
- */
- private T computefoE(final int month, final T az,
- final T xeff, final T latitude) {
- // The latitude has to be converted in degrees
- final T lat = FastMath.toDegrees(latitude);
- // Square root of the effective ionisation level
- final T sqAz = FastMath.sqrt(az);
- // seas parameter (Eq. 30 to 32)
- final int seas;
- if (month == 1 || month == 2 || month == 11 || month == 12) {
- seas = -1;
- } else if (month == 3 || month == 4 || month == 9 || month == 10) {
- seas = 0;
- } else {
- seas = 1;
- }
- // Latitudinal dependence (Eq. 33 and 34)
- final T ee = clipExp(lat.multiply(0.3));
- final T seasp = ee.subtract(1.0).divide(ee.add(1.0)).multiply(seas);
- // Critical frequency (Eq. 35)
- final T coef = seasp.multiply(0.019).negate().add(1.112);
- final T foE = FastMath.sqrt(coef .multiply(coef).multiply(sqAz).multiply(FastMath.cos(xeff).pow(0.6)).add(0.49));
- return foE;
- }
- /**
- * Computes the F2 layer height of maximum electron density.
- * @param field field of the elements
- * @param foE E layer layer critical frequency in MHz
- * @param foF2 F2 layer layer critical frequency in MHz
- * @param mF2 maximum usable frequency factor
- * @return hmF2 in km
- */
- private T computehmF2(final Field<T> field, final T foE, final T foF2, final T mF2) {
- // Zero
- final T zero = field.getZero();
- // Ratio
- final T fo = foF2.divide(foE);
- final T ratio = join(fo, zero.newInstance(1.75), zero.newInstance(20.0), fo.subtract(1.75));
- // deltaM parameter
- T deltaM = zero.subtract(0.012);
- if (foE.getReal() >= 1e-30) {
- deltaM = deltaM.add(ratio.subtract(1.215).divide(0.253).reciprocal());
- }
- // hmF2 Eq. 80
- final T mF2Sq = mF2.square();
- final T temp = FastMath.sqrt(mF2Sq.multiply(0.0196).add(1.0).divide(mF2Sq.multiply(1.2967).subtract(1.0)));
- final T height = mF2.multiply(1490.0).multiply(temp).divide(mF2.add(deltaM)).subtract(176.0);
- return height;
- }
- /**
- * Computes cf2 coefficients.
- * @param field field of the elements
- * @param af2 interpolated coefficients for foF2
- * @param t time argument
- * @return the cf2 coefficients array
- */
- private T[] computeCF2(final Field<T> field, final T[][] af2, final double t) {
- // Eq. 50
- final T[] cf2 = MathArrays.buildArray(field, 76);
- for (int i = 0; i < cf2.length; i++) {
- T sum = field.getZero();
- for (int k = 0; k < 6; k++) {
- final SinCos sc = FastMath.sinCos((k + 1) * t);
- sum = sum.add(af2[i][2 * k + 1].multiply(sc.sin()).add(af2[i][2 * (k + 1)].multiply(sc.cos())));
- }
- cf2[i] = af2[i][0].add(sum);
- }
- return cf2;
- }
- /**
- * Computes Cm3 coefficients.
- * @param field field of the elements
- * @param am3 interpolated coefficients for foF2
- * @param t time argument
- * @return the Cm3 coefficients array
- */
- private T[] computeCm3(final Field<T> field, final T[][] am3, final double t) {
- // Eq. 51
- final T[] cm3 = MathArrays.buildArray(field, 49);
- for (int i = 0; i < cm3.length; i++) {
- T sum = field.getZero();
- for (int k = 0; k < 4; k++) {
- final SinCos sc = FastMath.sinCos((k + 1) * t);
- sum = sum.add(am3[i][2 * k + 1].multiply(sc.sin()).add(am3[i][2 * (k + 1)].multiply(sc.cos())));
- }
- cm3[i] = am3[i][0].add(sum);
- }
- return cm3;
- }
- /**
- * This method computes the F2 layer critical frequency.
- * @param field field of the elements
- * @param modip modified DIP latitude, in degrees
- * @param cf2 Fourier time series for foF2
- * @param latitude latitude in radians
- * @param longitude longitude in radians
- * @return the F2 layer critical frequency, MHz
- */
- private T computefoF2(final Field<T> field, final T modip, final T[] cf2,
- final T latitude, final T longitude) {
- // One
- final T one = field.getOne();
- // Legendre grades (Eq. 63)
- final int[] q = new int[] {
- 12, 12, 9, 5, 2, 1, 1, 1, 1
- };
- // Array for geographic terms
- final T[] g = MathArrays.buildArray(field, cf2.length);
- g[0] = one;
- // MODIP coefficients Eq. 57
- final T sinMODIP = FastMath.sin(FastMath.toRadians(modip));
- final T[] m = MathArrays.buildArray(field, 12);
- m[0] = one;
- for (int i = 1; i < q[0]; i++) {
- m[i] = sinMODIP.multiply(m[i - 1]);
- g[i] = m[i];
- }
- // Latitude coefficients (Eq. 58)
- final T cosLat = FastMath.cos(latitude);
- final T[] p = MathArrays.buildArray(field, 8);
- p[0] = cosLat;
- for (int n = 2; n < 9; n++) {
- p[n - 1] = cosLat.multiply(p[n - 2]);
- }
- // latitude and longitude terms
- int index = 12;
- for (int i = 1; i < q.length; i++) {
- final FieldSinCos<T> sc = FastMath.sinCos(longitude.multiply(i));
- for (int j = 0; j < q[i]; j++) {
- g[index++] = m[j].multiply(p[i - 1]).multiply(sc.cos());
- g[index++] = m[j].multiply(p[i - 1]).multiply(sc.sin());
- }
- }
- // Compute foF2 by linear combination
- final T frequency = one.linearCombination(g, cf2);
- return frequency;
- }
- /**
- * This method computes the Maximum Usable Frequency factor.
- * @param field field of the elements
- * @param modip modified DIP latitude, in degrees
- * @param cm3 Fourier time series for M(3000)F2
- * @param latitude latitude in radians
- * @param longitude longitude in radians
- * @return the Maximum Usable Frequency factor
- */
- private T computeMF2(final Field<T> field, final T modip, final T[] cm3,
- final T latitude, final T longitude) {
- // One
- final T one = field.getOne();
- // Legendre grades (Eq. 71)
- final int[] r = new int[] {
- 7, 8, 6, 3, 2, 1, 1
- };
- // Array for geographic terms
- final T[] g = MathArrays.buildArray(field, cm3.length);
- g[0] = one;
- // MODIP coefficients Eq. 57
- final T sinMODIP = FastMath.sin(FastMath.toRadians(modip));
- final T[] m = MathArrays.buildArray(field, 12);
- m[0] = one;
- for (int i = 1; i < 12; i++) {
- m[i] = sinMODIP.multiply(m[i - 1]);
- if (i < 7) {
- g[i] = m[i];
- }
- }
- // Latitude coefficients (Eq. 58)
- final T cosLat = FastMath.cos(latitude);
- final T[] p = MathArrays.buildArray(field, 8);
- p[0] = cosLat;
- for (int n = 2; n < 9; n++) {
- p[n - 1] = cosLat.multiply(p[n - 2]);
- }
- // latitude and longitude terms
- int index = 7;
- for (int i = 1; i < r.length; i++) {
- final FieldSinCos<T> sc = FastMath.sinCos(longitude.multiply(i));
- for (int j = 0; j < r[i]; j++) {
- g[index++] = m[j].multiply(p[i - 1]).multiply(sc.cos());
- g[index++] = m[j].multiply(p[i - 1]).multiply(sc.sin());
- }
- }
- // Compute m3000 by linear combination
- final T m3000 = one.linearCombination(g, cm3);
- return m3000;
- }
- /**
- * This method computes the F1 layer critical frequency.
- * <p>
- * This computation performs the algorithm exposed in Annex F
- * of the reference document.
- * </p>
- * @param field field of the elements
- * @param foE the E layer critical frequency, MHz
- * @return the F1 layer critical frequency, MHz
- * @param foF2 the F2 layer critical frequency, MHz
- */
- private T computefoF1(final Field<T> field, final T foE, final T foF2) {
- final T zero = field.getZero();
- final T temp = join(foE.multiply(1.4), zero, zero.newInstance(1000.0), foE.subtract(2.0));
- final T temp2 = join(zero, temp, zero.newInstance(1000.0), foE.subtract(temp));
- final T value = join(temp2, temp2.multiply(0.85), zero.newInstance(60.0), foF2.multiply(0.85).subtract(temp2));
- if (value.getReal() < 1.0E-6) {
- return zero;
- } else {
- return value;
- }
- }
- /**
- * This method allows the computation of the F2, F1 and E layer amplitudes.
- * <p>
- * The resulting element is an array having the following form:
- * <ul>
- * <li>double[0] = A1 → F2 layer amplitude
- * <li>double[1] = A2 → F1 layer amplitude
- * <li>double[2] = A3 → E layer amplitude
- * </ul>
- * </p>
- * @param field field of the elements
- * @param nmE E layer maximum density in 10^11 m-3
- * @param nmF1 F1 layer maximum density in 10^11 m-3
- * @param foF1 F1 layer critical frequency in MHz
- * @return a three components array containing the layer amplitudes
- */
- private T[] computeLayerAmplitudes(final Field<T> field, final T nmE, final T nmF1, final T foF1) {
- // Zero
- final T zero = field.getZero();
- // Initialize array
- final T[] amplitude = MathArrays.buildArray(field, 3);
- // F2 layer amplitude (Eq. 90)
- final T a1 = nmF2.multiply(4.0);
- amplitude[0] = a1;
- // F1 and E layer amplitudes (Eq. 91 to 98)
- if (foF1.getReal() < 0.5) {
- amplitude[1] = zero;
- amplitude[2] = nmE.subtract(epst(a1, hmF2, b2Bot, hmE)).multiply(4.0);
- } else {
- T a2a = zero;
- T a3a = nmE.multiply(4.0);
- for (int i = 0; i < 5; i++) {
- a2a = nmF1.subtract(epst(a1, hmF2, b2Bot, hmF1)).subtract(epst(a3a, hmE, beTop, hmF1)).multiply(4.0);
- a2a = join(a2a, nmF1.multiply(0.8), field.getOne(), a2a.subtract(nmF1.multiply(0.8)));
- a3a = nmE.subtract(epst(a2a, hmF1, b1Bot, hmE)).subtract(epst(a1, hmF2, b2Bot, hmE)).multiply(4.0);
- }
- amplitude[1] = a2a;
- amplitude[2] = join(a3a, zero.newInstance(0.05), zero.newInstance(60.0), a3a.subtract(0.005));
- }
- return amplitude;
- }
- /**
- * This method computes the topside thickness parameter H0.
- *
- * @param field field of the elements
- * @param month current month
- * @param azr effective sunspot number
- * @return H0 in km
- */
- private T computeH0(final Field<T> field, final int month, final T azr) {
- // One
- final T one = field.getOne();
- // Auxiliary parameter ka (Eq. 99 and 100)
- final T ka;
- if (month > 3 && month < 10) {
- // month = 4,5,6,7,8,9
- ka = azr.multiply(0.014).add(hmF2.multiply(0.008)).negate().add(6.705);
- } else {
- // month = 1,2,3,10,11,12
- final T ratio = hmF2.divide(b2Bot);
- ka = ratio.multiply(ratio).multiply(0.097).add(nmF2.multiply(0.153)).add(-7.77);
- }
- // Auxiliary parameter kb (Eq. 101 and 102)
- T kb = join(ka, one.newInstance(2.0), one, ka.subtract(2.0));
- kb = join(one.newInstance(8.0), kb, one, kb.subtract(8.0));
- // Auxiliary parameter Ha (Eq. 103)
- final T hA = kb.multiply(b2Bot);
- // Auxiliary parameters x and v (Eq. 104 and 105)
- final T x = hA.subtract(150.0).multiply(0.01);
- final T v = x.multiply(0.041163).subtract(0.183981).multiply(x).add(1.424472);
- // Topside thickness parameter (Eq. 106)
- final T h = hA.divide(v);
- return h;
- }
- /**
- * A clipped exponential function.
- * <p>
- * This function, describe in section F.2.12.2 of the reference document, is
- * recommanded for the computation of exponential values.
- * </p>
- * @param power power for exponential function
- * @return clipped exponential value
- */
- private T clipExp(final T power) {
- final T zero = power.getField().getZero();
- if (power.getReal() > 80.0) {
- return zero.newInstance(5.5406E34);
- } else if (power.getReal() < -80) {
- return zero.newInstance(1.8049E-35);
- } else {
- return FastMath.exp(power);
- }
- }
- /**
- * This method provides a third order interpolation function
- * as recommended in the reference document (Ref Eq. 128 to Eq. 138)
- *
- * @param z1 z1 coefficient
- * @param z2 z2 coefficient
- * @param z3 z3 coefficient
- * @param z4 z4 coefficient
- * @param x position
- * @return a third order interpolation
- */
- private T interpolate(final T z1, final T z2,
- final T z3, final T z4,
- final T x) {
- if (FastMath.abs(2.0 * x.getReal()) < 1e-10) {
- return z2;
- }
- final T delta = x.multiply(2.0).subtract(1.0);
- final T g1 = z3.add(z2);
- final T g2 = z3.subtract(z2);
- final T g3 = z4.add(z1);
- final T g4 = z4.subtract(z1).divide(3.0);
- final T a0 = g1.multiply(9.0).subtract(g3);
- final T a1 = g2.multiply(9.0).subtract(g4);
- final T a2 = g3.subtract(g1);
- final T a3 = g4.subtract(g2);
- final T zx = delta.multiply(a3).add(a2).multiply(delta).add(a1).multiply(delta).add(a0).multiply(0.0625);
- return zx;
- }
- /**
- * Allows smooth joining of functions f1 and f2
- * (i.e. continuous first derivatives) at origin.
- * <p>
- * This function, describe in section F.2.12.1 of the reference document, is
- * recommanded for computational efficiency.
- * </p>
- * @param dF1 first function
- * @param dF2 second function
- * @param dA width of transition region
- * @param dX x value
- * @return the computed value
- */
- private T join(final T dF1, final T dF2,
- final T dA, final T dX) {
- final T ee = clipExp(dA.multiply(dX));
- return dF1.multiply(ee).add(dF2).divide(ee.add(1.0));
- }
- /**
- * The Epstein function.
- * <p>
- * This function, describe in section 2.5.1 of the reference document, is used
- * as a basis analytical function in NeQuick for the construction of the ionospheric layers.
- * </p>
- * @param x x parameter
- * @param y y parameter
- * @param z z parameter
- * @param w w parameter
- * @return value of the epstein function
- */
- private T epst(final T x, final T y,
- final T z, final T w) {
- final T ex = clipExp(w.subtract(y).divide(z));
- final T opex = ex.add(1.0);
- final T epst = x.multiply(ex).divide(opex.multiply(opex));
- return epst;
- }
- }