1 /* Copyright 2022-2025 Romain Serra
2 * Licensed to CS GROUP (CS) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * CS licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17 package org.orekit.control.indirect.adjoint.cost;
18
19 import org.hipparchus.CalculusFieldElement;
20 import org.hipparchus.Field;
21 import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
22 import org.hipparchus.util.MathArrays;
23 import org.orekit.control.indirect.adjoint.CartesianAdjointDerivativesProvider;
24 import org.orekit.propagation.FieldSpacecraftState;
25 import org.orekit.propagation.events.FieldEventDetector;
26 import org.orekit.propagation.integration.FieldAdditionalDerivativesProvider;
27 import org.orekit.propagation.integration.FieldCombinedDerivatives;
28
29 import java.util.stream.Stream;
30
31 /**
32 * Interface to definite cost function in the frame of Pontryagin's Maximum Principle using Cartesian coordinates.
33 * It provides the link between the optimal control and the adjoint variables. This relationship is obtained by maximizing the Hamiltonian.
34 * The choice of control vector impacts on it.
35 * @author Romain Serra
36 * @see CartesianAdjointDerivativesProvider
37 * @since 13.0
38 */
39 public interface FieldCartesianCost<T extends CalculusFieldElement<T>> {
40
41 /** Getter for adjoint vector name.
42 * @return adjoint vector name
43 */
44 String getAdjointName();
45
46 /** Getter for adjoint vector dimension.
47 * @return adjoint dimension
48 */
49 int getAdjointDimension();
50
51 /** Getter for mass flow rate factor. It is negated and multiplied by the thrust force magnitude to obtain the mass time derivative.
52 * The fact that it is a constant means that the exhaust speed is assumed to be independent of time.
53 * @return mass flow rate factor
54 */
55 T getMassFlowRateFactor();
56
57 /**
58 * Computes the thrust acceleration vector in propagation frame from the adjoint variables and the mass.
59 * @param adjointVariables adjoint vector
60 * @param mass mass
61 * @return thrust vector
62 */
63 FieldVector3D<T> getFieldThrustAccelerationVector(T[] adjointVariables, T mass);
64
65 /**
66 * Update the adjoint derivatives if necessary.
67 *
68 * @param adjointVariables adjoint vector
69 * @param mass mass
70 * @param adjointDerivatives derivatives to update
71 */
72 void updateFieldAdjointDerivatives(T[] adjointVariables, T mass, T[] adjointDerivatives);
73
74 /**
75 * Computes the Hamiltonian contribution to the cost function.
76 * It equals the Lagrange-form integrand multiplied by -1.
77 * @param adjointVariables adjoint vector
78 * @param mass mass
79 * @return contribution to Hamiltonian
80 */
81 T getFieldHamiltonianContribution(T[] adjointVariables, T mass);
82
83 /**
84 * Get the detectors needed for propagation.
85 * @param field field
86 * @return event detectors
87 */
88 default Stream<FieldEventDetector<T>> getFieldEventDetectors(final Field<T> field) {
89 return Stream.of();
90 }
91
92 /**
93 * Get the derivatives provider to be able to integrate the cost function.
94 * @param name name of cost as additional state variable
95 * @return derivatives provider
96 * @since 13.0
97 */
98 default FieldAdditionalDerivativesProvider<T> getCostDerivativeProvider(final String name) {
99 return new FieldAdditionalDerivativesProvider<T>() {
100
101 @Override
102 public String getName() {
103 return name;
104 }
105
106 @Override
107 public int getDimension() {
108 return 1;
109 }
110
111 @Override
112 public boolean yields(final FieldSpacecraftState<T> state) {
113 return !state.hasAdditionalData(getAdjointName());
114 }
115
116 @Override
117 public FieldCombinedDerivatives<T> combinedDerivatives(final FieldSpacecraftState<T> s) {
118 final T mass = s.getMass();
119 final T[] derivatives = MathArrays.buildArray(mass.getField(), 1);
120 final T[] adjoint = s.getAdditionalState(getAdjointName());
121 final T hamiltonianContribution = getFieldHamiltonianContribution(adjoint, s.getMass());
122 derivatives[0] = hamiltonianContribution.negate();
123 return new FieldCombinedDerivatives<>(derivatives, null);
124 }
125 };
126 }
127
128 /**
129 * Method returning equivalent in non-Field.
130 * @return cost function for non-Field applications
131 */
132 CartesianCost toCartesianCost();
133 }