TimeStampedFieldAngularCoordinates.java
- /* Copyright 2002-2016 CS Systèmes d'Information
- * Licensed to CS Systèmes d'Information (CS) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * CS licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.orekit.utils;
- import java.util.Collection;
- import org.apache.commons.math3.Field;
- import org.apache.commons.math3.RealFieldElement;
- import org.apache.commons.math3.analysis.interpolation.FieldHermiteInterpolator;
- import org.apache.commons.math3.geometry.euclidean.threed.FieldRotation;
- import org.apache.commons.math3.geometry.euclidean.threed.FieldVector3D;
- import org.apache.commons.math3.geometry.euclidean.threed.RotationConvention;
- import org.apache.commons.math3.util.FastMath;
- import org.apache.commons.math3.util.MathArrays;
- import org.orekit.errors.OrekitException;
- import org.orekit.errors.OrekitInternalError;
- import org.orekit.errors.OrekitMessages;
- import org.orekit.time.AbsoluteDate;
- import org.orekit.time.TimeStamped;
- /** {@link TimeStamped time-stamped} version of {@link FieldAngularCoordinates}.
- * <p>Instances of this class are guaranteed to be immutable.</p>
- * @param <T> the type of the field elements
- * @author Luc Maisonobe
- * @since 7.0
- */
- public class TimeStampedFieldAngularCoordinates<T extends RealFieldElement<T>>
- extends FieldAngularCoordinates<T> implements TimeStamped {
- /** Serializable UID. */
- private static final long serialVersionUID = 20140723L;
- /** The date. */
- private final AbsoluteDate date;
- /** Builds a rotation/rotation rate pair.
- * @param date coordinates date
- * @param rotation rotation
- * @param rotationRate FieldRotation<T> rate Ω (rad/s)
- * @param rotationAcceleration FieldRotation<T> acceleration dΩ/dt (rad²/s²)
- */
- public TimeStampedFieldAngularCoordinates(final AbsoluteDate date,
- final FieldRotation<T> rotation,
- final FieldVector3D<T> rotationRate,
- final FieldVector3D<T> rotationAcceleration) {
- super(rotation, rotationRate, rotationAcceleration);
- this.date = date;
- }
- /** {@inheritDoc} */
- public AbsoluteDate getDate() {
- return date;
- }
- /** Revert a rotation/rotation rate pair.
- * Build a pair which reverse the effect of another pair.
- * @return a new pair whose effect is the reverse of the effect
- * of the instance
- */
- public TimeStampedFieldAngularCoordinates<T> revert() {
- return new TimeStampedFieldAngularCoordinates<T>(date,
- getRotation().revert(),
- getRotation().applyInverseTo(getRotationRate().negate()),
- getRotation().applyInverseTo(getRotationAcceleration().negate()));
- }
- /** Get a time-shifted state.
- * <p>
- * The state can be slightly shifted to close dates. This shift is based on
- * a simple linear model. It is <em>not</em> intended as a replacement for
- * proper attitude propagation but should be sufficient for either small
- * time shifts or coarse accuracy.
- * </p>
- * @param dt time shift in seconds
- * @return a new state, shifted with respect to the instance (which is immutable)
- */
- public TimeStampedFieldAngularCoordinates<T> shiftedBy(final double dt) {
- final FieldAngularCoordinates<T> sac = super.shiftedBy(dt);
- return new TimeStampedFieldAngularCoordinates<T>(date.shiftedBy(dt),
- sac.getRotation(), sac.getRotationRate(), sac.getRotationAcceleration());
- }
- /** Add an offset from the instance.
- * <p>
- * We consider here that the offset FieldRotation<T> is applied first and the
- * instance is applied afterward. Note that angular coordinates do <em>not</em>
- * commute under this operation, i.e. {@code a.addOffset(b)} and {@code
- * b.addOffset(a)} lead to <em>different</em> results in most cases.
- * </p>
- * <p>
- * The two methods {@link #addOffset(FieldAngularCoordinates) addOffset} and
- * {@link #subtractOffset(FieldAngularCoordinates) subtractOffset} are designed
- * so that round trip applications are possible. This means that both {@code
- * ac1.subtractOffset(ac2).addOffset(ac2)} and {@code
- * ac1.addOffset(ac2).subtractOffset(ac2)} return angular coordinates equal to ac1.
- * </p>
- * @param offset offset to subtract
- * @return new instance, with offset subtracted
- * @see #subtractOffset(FieldAngularCoordinates)
- */
- public TimeStampedFieldAngularCoordinates<T> addOffset(final FieldAngularCoordinates<T> offset) {
- final FieldVector3D<T> rOmega = getRotation().applyTo(offset.getRotationRate());
- final FieldVector3D<T> rOmegaDot = getRotation().applyTo(offset.getRotationAcceleration());
- return new TimeStampedFieldAngularCoordinates<T>(date,
- getRotation().compose(offset.getRotation(), RotationConvention.VECTOR_OPERATOR),
- getRotationRate().add(rOmega),
- new FieldVector3D<T>( 1.0, getRotationAcceleration(),
- 1.0, rOmegaDot,
- -1.0, FieldVector3D.crossProduct(getRotationRate(), rOmega)));
- }
- /** Subtract an offset from the instance.
- * <p>
- * We consider here that the offset Rotation is applied first and the
- * instance is applied afterward. Note that angular coordinates do <em>not</em>
- * commute under this operation, i.e. {@code a.subtractOffset(b)} and {@code
- * b.subtractOffset(a)} lead to <em>different</em> results in most cases.
- * </p>
- * <p>
- * The two methods {@link #addOffset(FieldAngularCoordinates) addOffset} and
- * {@link #subtractOffset(FieldAngularCoordinates) subtractOffset} are designed
- * so that round trip applications are possible. This means that both {@code
- * ac1.subtractOffset(ac2).addOffset(ac2)} and {@code
- * ac1.addOffset(ac2).subtractOffset(ac2)} return angular coordinates equal to ac1.
- * </p>
- * @param offset offset to subtract
- * @return new instance, with offset subtracted
- * @see #addOffset(FieldAngularCoordinates)
- */
- public TimeStampedFieldAngularCoordinates<T> subtractOffset(final FieldAngularCoordinates<T> offset) {
- return addOffset(offset.revert());
- }
- /** Interpolate angular coordinates.
- * <p>
- * The interpolated instance is created by polynomial Hermite interpolation
- * on Rodrigues vector ensuring FieldRotation<T> rate remains the exact derivative of FieldRotation<T>.
- * </p>
- * <p>
- * This method is based on Sergei Tanygin's paper <a
- * href="http://www.agi.com/downloads/resources/white-papers/Attitude-interpolation.pdf">Attitude
- * Interpolation</a>, changing the norm of the vector to match the modified Rodrigues
- * vector as described in Malcolm D. Shuster's paper <a
- * href="http://www.ladispe.polito.it/corsi/Meccatronica/02JHCOR/2011-12/Slides/Shuster_Pub_1993h_J_Repsurv_scan.pdf">A
- * Survey of Attitude Representations</a>. This change avoids the singularity at π.
- * There is still a singularity at 2π, which is handled by slightly offsetting all FieldRotation<T>s
- * when this singularity is detected.
- * </p>
- * <p>
- * Note that even if first time derivatives (FieldRotation<T> rates)
- * from sample can be ignored, the interpolated instance always includes
- * interpolated derivatives. This feature can be used explicitly to
- * compute these derivatives when it would be too complex to compute them
- * from an analytical formula: just compute a few sample points from the
- * explicit formula and set the derivatives to zero in these sample points,
- * then use interpolation to add derivatives consistent with the FieldRotation<T>s.
- * </p>
- * @param date interpolation date
- * @param filter filter for derivatives from the sample to use in interpolation
- * @param sample sample points on which interpolation should be done
- * @param <T> the type of the field elements
- * @return a new position-velocity, interpolated at specified date
- * @exception OrekitException if the number of point is too small for interpolating
- */
- @SuppressWarnings("unchecked")
- public static <T extends RealFieldElement<T>>
- TimeStampedFieldAngularCoordinates<T> interpolate(final AbsoluteDate date,
- final AngularDerivativesFilter filter,
- final Collection<TimeStampedFieldAngularCoordinates<T>> sample)
- throws OrekitException {
- // get field properties
- final Field<T> field = sample.iterator().next().getRotation().getQ0().getField();
- final T zero = field.getZero();
- final T one = field.getOne();
- // set up safety elements for 2π singularity avoidance
- final double epsilon = 2 * FastMath.PI / sample.size();
- final double threshold = FastMath.min(-(1.0 - 1.0e-4), -FastMath.cos(epsilon / 4));
- // set up a linear model canceling mean rotation rate
- final FieldVector3D<T> meanRate;
- if (filter != AngularDerivativesFilter.USE_R) {
- FieldVector3D<T> sum = new FieldVector3D<T>(zero, zero, zero);
- for (final TimeStampedFieldAngularCoordinates<T> datedAC : sample) {
- sum = sum.add(datedAC.getRotationRate());
- }
- meanRate = new FieldVector3D<T>(1.0 / sample.size(), sum);
- } else {
- if (sample.size() < 2) {
- throw new OrekitException(OrekitMessages.NOT_ENOUGH_DATA_FOR_INTERPOLATION,
- sample.size());
- }
- FieldVector3D<T> sum = new FieldVector3D<T>(zero, zero, zero);
- TimeStampedFieldAngularCoordinates<T> previous = null;
- for (final TimeStampedFieldAngularCoordinates<T> datedAC : sample) {
- if (previous != null) {
- sum = sum.add(estimateRate(previous.getRotation(), datedAC.getRotation(),
- datedAC.date.durationFrom(previous.getDate())));
- }
- previous = datedAC;
- }
- meanRate = new FieldVector3D<T>(1.0 / (sample.size() - 1), sum);
- }
- TimeStampedFieldAngularCoordinates<T> offset =
- new TimeStampedFieldAngularCoordinates<T>(date, new FieldRotation<T>(one, zero, zero, zero, false),
- meanRate, new FieldVector3D<T>(zero, zero, zero));
- boolean restart = true;
- for (int i = 0; restart && i < sample.size() + 2; ++i) {
- // offset adaptation parameters
- restart = false;
- // set up an interpolator taking derivatives into account
- final FieldHermiteInterpolator<T> interpolator = new FieldHermiteInterpolator<T>();
- // add sample points
- final double[] previous = new double[] {
- 1.0, 0.0, 0.0, 0.0
- };
- for (final TimeStampedFieldAngularCoordinates<T> ac : sample) {
- // remove linear offset from the current coordinates
- final T dt = zero.add(ac.date.durationFrom(date));
- final TimeStampedFieldAngularCoordinates<T> fixed = ac.subtractOffset(offset.shiftedBy(dt.getReal()));
- final T[][] rodrigues = getModifiedRodrigues(fixed, previous, threshold);
- if (rodrigues == null) {
- // the sample point is close to a modified Rodrigues vector singularity
- // we need to change the linear offset model to avoid this
- restart = true;
- break;
- }
- switch (filter) {
- case USE_RRA:
- // populate sample with rotation, rotation rate and acceleration data
- interpolator.addSamplePoint(dt, rodrigues[0], rodrigues[1], rodrigues[2]);
- break;
- case USE_RR:
- // populate sample with rotation and rotation rate data
- interpolator.addSamplePoint(dt, rodrigues[0], rodrigues[1]);
- break;
- case USE_R:
- // populate sample with rotation data only
- interpolator.addSamplePoint(dt, rodrigues[0]);
- break;
- default :
- // this should never happen
- throw new OrekitInternalError(null);
- }
- }
- if (restart) {
- // interpolation failed, some intermediate rotation was too close to 2π
- // we need to offset all rotations to avoid the singularity
- offset = offset.addOffset(new FieldAngularCoordinates<T>(new FieldRotation<T>(new FieldVector3D<T>(one, zero, zero),
- zero.add(epsilon),
- RotationConvention.VECTOR_OPERATOR),
- new FieldVector3D<T>(zero, zero, zero),
- new FieldVector3D<T>(zero, zero, zero)));
- } else {
- // interpolation succeeded with the current offset
- final T[][] p = interpolator.derivatives(field.getZero(), 2);
- return createFromModifiedRodrigues(p, offset);
- }
- }
- // this should never happen
- throw new OrekitInternalError(null);
- }
- /** Create a 6 elements array.
- * @param field field to which coordinates belong
- * @param a0 first element
- * @param a1 second element
- * @param a2 third element
- * @param a3 fourth element
- * @param a4 fifth element
- * @param a5 sixth element
- * @param <T> the type of the field elements
- * @return array containing a0, a1, a2, a3, a4, a5
- */
- private static <T extends RealFieldElement<T>> T[] array6(final Field<T> field,
- final T a0, final T a1, final T a2,
- final T a3, final T a4, final T a5) {
- final T[] array = MathArrays.buildArray(field, 6);
- array[0] = a0;
- array[1] = a1;
- array[2] = a2;
- array[3] = a3;
- array[4] = a4;
- array[5] = a5;
- return array;
- }
- /** Create a 3x3 matrix.
- * @param field field to which coordinates belong
- * @param a00 first element, first row
- * @param a01 second element, first row
- * @param a02 third element, first row
- * @param a10 first element, second row
- * @param a11 second element, second row
- * @param a12 third element, second row
- * @param a20 first element, third row
- * @param a21 second element, third row
- * @param a22 third element, third row
- * @param <T> the type of the field elements
- * @return array containing a0, a1, a2
- */
- private static <T extends RealFieldElement<T>> T[][] matrix33(final Field<T> field,
- final T a00, final T a01, final T a02,
- final T a10, final T a11, final T a12,
- final T a20, final T a21, final T a22) {
- final T[][] matrix = MathArrays.buildArray(field, 3, 3);
- matrix[0][0] = a00;
- matrix[0][1] = a01;
- matrix[0][2] = a02;
- matrix[1][0] = a10;
- matrix[1][1] = a11;
- matrix[1][2] = a12;
- matrix[2][0] = a20;
- matrix[2][1] = a21;
- matrix[2][2] = a22;
- return matrix;
- }
- /** Convert rotation, rate and acceleration to modified Rodrigues vector and derivatives.
- * <p>
- * The modified Rodrigues vector is tan(θ/4) u where θ and u are the
- * rotation angle and axis respectively.
- * </p>
- * @param fixed coordinates to convert, with offset already fixed
- * @param previous previous quaternion used
- * @param threshold threshold for rotations too close to 2π
- * @param <T> the type of the field elements
- * @return modified Rodrigues vector and derivative, or null if rotation is too close to 2π
- */
- private static <T extends RealFieldElement<T>> T[][] getModifiedRodrigues(final TimeStampedFieldAngularCoordinates<T> fixed,
- final double[] previous, final double threshold) {
- // make sure all interpolated points will be on the same branch
- T q0 = fixed.getRotation().getQ0();
- T q1 = fixed.getRotation().getQ1();
- T q2 = fixed.getRotation().getQ2();
- T q3 = fixed.getRotation().getQ3();
- if (MathArrays.linearCombination(q0.getReal(), previous[0],
- q1.getReal(), previous[1],
- q2.getReal(), previous[2],
- q3.getReal(), previous[3]) < 0) {
- q0 = q0.negate();
- q1 = q1.negate();
- q2 = q2.negate();
- q3 = q3.negate();
- }
- previous[0] = q0.getReal();
- previous[1] = q1.getReal();
- previous[2] = q2.getReal();
- previous[3] = q3.getReal();
- // check modified Rodrigues vector singularity
- if (q0.getReal() < threshold) {
- // this is an intermediate point that happens to be 2PI away from reference
- // we need to change the linear offset model to avoid this point
- return null;
- }
- final Field<T> field = q0.getField();
- final T oX = fixed.getRotationRate().getX();
- final T oY = fixed.getRotationRate().getY();
- final T oZ = fixed.getRotationRate().getZ();
- final T oXDot = fixed.getRotationAcceleration().getX();
- final T oYDot = fixed.getRotationAcceleration().getY();
- final T oZDot = fixed.getRotationAcceleration().getZ();
- // first time-derivatives of the quaternion
- final T q0Dot = q0.linearCombination(q1.negate(), oX, q2.negate(), oY, q3.negate(), oZ).multiply(0.5);
- final T q1Dot = q1.linearCombination(q0, oX, q3.negate(), oY, q2, oZ).multiply(0.5);
- final T q2Dot = q2.linearCombination(q3, oX, q0, oY, q1.negate(), oZ).multiply(0.5);
- final T q3Dot = q3.linearCombination(q2.negate(), oX, q1, oY, q0, oZ).multiply(0.5);
- // second time-derivatives of the quaternion
- final T q0DotDot = q0.linearCombination(array6(field, q1, q2, q3, q1Dot, q2Dot, q3Dot),
- array6(field, oXDot, oYDot, oZDot, oX, oY, oZ)).multiply(-0.5);
- final T q1DotDot = q1.linearCombination(array6(field, q0, q2, q3.negate(), q0Dot, q2Dot, q3Dot.negate()),
- array6(field, oXDot, oZDot, oYDot, oX, oZ, oY)).multiply(0.5);
- final T q2DotDot = q2.linearCombination(array6(field, q0, q3, q1.negate(), q0Dot, q3Dot, q1Dot.negate()),
- array6(field, oYDot, oXDot, oZDot, oY, oX, oZ)).multiply(0.5);
- final T q3DotDot = q3.linearCombination(array6(field, q0, q1, q2.negate(), q0Dot, q1Dot, q2Dot.negate()),
- array6(field, oZDot, oYDot, oXDot, oZ, oY, oX)).multiply(0.5);
- // the modified Rodrigues is tan(θ/4) u where θ and u are the rotation angle and axis respectively
- // this can be rewritten using quaternion components:
- // r (q₁ / (1+q₀), q₂ / (1+q₀), q₃ / (1+q₀))
- // applying the derivation chain rule to previous expression gives rDot and rDotDot
- final T inv = q0.add(1.0).reciprocal();
- final T mTwoInvQ0Dot = inv.multiply(q0Dot).multiply(-2);
- final T r1 = inv.multiply(q1);
- final T r2 = inv.multiply(q2);
- final T r3 = inv.multiply(q3);
- final T mInvR1 = inv.multiply(r1).negate();
- final T mInvR2 = inv.multiply(r2).negate();
- final T mInvR3 = inv.multiply(r3).negate();
- final T r1Dot = r1.linearCombination(inv, q1Dot, mInvR1, q0Dot);
- final T r2Dot = r2.linearCombination(inv, q2Dot, mInvR2, q0Dot);
- final T r3Dot = r3.linearCombination(inv, q3Dot, mInvR3, q0Dot);
- final T r1DotDot = r1.linearCombination(inv, q1DotDot, mTwoInvQ0Dot, r1Dot, mInvR1, q0DotDot);
- final T r2DotDot = r2.linearCombination(inv, q2DotDot, mTwoInvQ0Dot, r2Dot, mInvR2, q0DotDot);
- final T r3DotDot = r3.linearCombination(inv, q3DotDot, mTwoInvQ0Dot, r3Dot, mInvR3, q0DotDot);
- return matrix33(field,
- r1, r2, r3,
- r1Dot, r2Dot, r3Dot,
- r1DotDot, r2DotDot, r3DotDot);
- }
- /** Convert a modified Rodrigues vector and derivatives to angular coordinates.
- * @param r modified Rodrigues vector (with first derivatives)
- * @param offset linear offset model to add (its date must be consistent with the modified Rodrigues vector)
- * @param <T> the type of the field elements
- * @return angular coordinates
- */
- private static <T extends RealFieldElement<T>>
- TimeStampedFieldAngularCoordinates<T> createFromModifiedRodrigues(final T[][] r,
- final TimeStampedFieldAngularCoordinates<T> offset) {
- // rotation
- final T rSquared = r[0][0].multiply(r[0][0]).add(r[0][1].multiply(r[0][1])).add(r[0][2].multiply(r[0][2]));
- final T oPQ0 = rSquared.add(1).reciprocal().multiply(2);
- final T q0 = oPQ0.subtract(1);
- final T q1 = oPQ0.multiply(r[0][0]);
- final T q2 = oPQ0.multiply(r[0][1]);
- final T q3 = oPQ0.multiply(r[0][2]);
- // rotation rate
- final T oPQ02 = oPQ0.multiply(oPQ0);
- final T q0Dot = oPQ02.negate().multiply(q0.linearCombination(r[0][0], r[1][0], r[0][1], r[1][1], r[0][2], r[1][2]));
- final T q1Dot = oPQ0.multiply(r[1][0]).add(r[0][0].multiply(q0Dot));
- final T q2Dot = oPQ0.multiply(r[1][1]).add(r[0][1].multiply(q0Dot));
- final T q3Dot = oPQ0.multiply(r[1][2]).add(r[0][2].multiply(q0Dot));
- final T oX = q1.linearCombination(q1.negate(), q0Dot, q0, q1Dot, q3, q2Dot, q2.negate(), q3Dot).multiply(2);
- final T oY = q2.linearCombination(q2.negate(), q0Dot, q3.negate(), q1Dot, q0, q2Dot, q1, q3Dot).multiply(2);
- final T oZ = q3.linearCombination(q3.negate(), q0Dot, q2, q1Dot, q1.negate(), q2Dot, q0, q3Dot).multiply(2);
- // rotation acceleration
- final T q0DotDot = q0.getField().getOne().subtract(q0).divide(oPQ0).multiply(q0Dot).multiply(q0Dot).
- subtract(oPQ02.multiply(q0.linearCombination(r[0][0], r[2][0], r[0][1], r[2][1], r[0][2], r[2][2]))).
- subtract(q1Dot.multiply(q1Dot).add(q2Dot.multiply(q2Dot)).add(q3Dot.multiply(q3Dot)));
- final T q1DotDot = q1.linearCombination(oPQ0, r[2][0], r[1][0].multiply(2), q0Dot, r[0][0], q0DotDot);
- final T q2DotDot = q2.linearCombination(oPQ0, r[2][1], r[1][1].multiply(2), q0Dot, r[0][1], q0DotDot);
- final T q3DotDot = q3.linearCombination(oPQ0, r[2][2], r[1][2].multiply(2), q0Dot, r[0][2], q0DotDot);
- final T oXDot = q1.linearCombination(q1.negate(), q0DotDot, q0, q1DotDot, q3, q2DotDot, q2.negate(), q3DotDot).multiply(2);
- final T oYDot = q2.linearCombination(q2.negate(), q0DotDot, q3.negate(), q1DotDot, q0, q2DotDot, q1, q3DotDot).multiply(2);
- final T oZDot = q3.linearCombination(q3.negate(), q0DotDot, q2, q1DotDot, q1.negate(), q2DotDot, q0, q3DotDot).multiply(2);
- return new TimeStampedFieldAngularCoordinates<T>(offset.getDate(),
- new FieldRotation<T>(q0, q1, q2, q3, false),
- new FieldVector3D<T>(oX, oY, oZ),
- new FieldVector3D<T>(oXDot, oYDot, oZDot)).addOffset(offset);
- }
- }