FieldAngularCoordinates.java
- /* Copyright 2002-2016 CS Systèmes d'Information
- * Licensed to CS Systèmes d'Information (CS) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * CS licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.orekit.utils;
- import java.io.Serializable;
- import java.util.ArrayList;
- import java.util.Collection;
- import java.util.List;
- import org.apache.commons.math3.RealFieldElement;
- import org.apache.commons.math3.geometry.euclidean.threed.FieldRotation;
- import org.apache.commons.math3.geometry.euclidean.threed.FieldVector3D;
- import org.apache.commons.math3.geometry.euclidean.threed.RotationConvention;
- import org.apache.commons.math3.util.Pair;
- import org.orekit.errors.OrekitException;
- import org.orekit.time.AbsoluteDate;
- import org.orekit.time.TimeShiftable;
- /** Simple container for FieldRotation<T>/FieldRotation<T> rate pairs, using {@link RealFieldElement}.
- * <p>
- * The state can be slightly shifted to close dates. This shift is based on
- * a simple quadratic model. It is <em>not</em> intended as a replacement for
- * proper attitude propagation but should be sufficient for either small
- * time shifts or coarse accuracy.
- * </p>
- * <p>
- * This class is the angular counterpart to {@link FieldPVCoordinates}.
- * </p>
- * <p>Instances of this class are guaranteed to be immutable.</p>
- * @param <T> the type of the field elements
- * @author Luc Maisonobe
- * @since 6.0
- * @see AngularCoordinates
- */
- public class FieldAngularCoordinates<T extends RealFieldElement<T>>
- implements TimeShiftable<FieldAngularCoordinates<T>>, Serializable {
- /** Serializable UID. */
- private static final long serialVersionUID = 20140414L;
- /** FieldRotation<T>. */
- private final FieldRotation<T> rotation;
- /** FieldRotation<T> rate. */
- private final FieldVector3D<T> rotationRate;
- /** FieldRotation<T> acceleration. */
- private final FieldVector3D<T> rotationAcceleration;
- /** Builds a rotation/rotation rate pair.
- * @param rotation rotation
- * @param rotationRate rotation rate Ω (rad/s)
- */
- public FieldAngularCoordinates(final FieldRotation<T> rotation, final FieldVector3D<T> rotationRate) {
- this(rotation, rotationRate,
- new FieldVector3D<T>(rotation.getQ0().getField().getZero(),
- rotation.getQ0().getField().getZero(),
- rotation.getQ0().getField().getZero()));
- }
- /** Builds a FieldRotation<T>/FieldRotation<T> rate/FieldRotation<T> acceleration triplet.
- * @param rotation FieldRotation<T>
- * @param rotationRate FieldRotation<T> rate Ω (rad/s)
- * @param rotationAcceleration FieldRotation<T> acceleration dΩ/dt (rad²/s²)
- */
- public FieldAngularCoordinates(final FieldRotation<T> rotation, final FieldVector3D<T> rotationRate,
- final FieldVector3D<T> rotationAcceleration) {
- this.rotation = rotation;
- this.rotationRate = rotationRate;
- this.rotationAcceleration = rotationAcceleration;
- }
- /** Estimate FieldRotation<T> rate between two orientations.
- * <p>Estimation is based on a simple fixed rate FieldRotation<T>
- * during the time interval between the two orientations.</p>
- * @param start start orientation
- * @param end end orientation
- * @param dt time elapsed between the dates of the two orientations
- * @param <T> the type of the field elements
- * @return FieldRotation<T> rate allowing to go from start to end orientations
- */
- public static <T extends RealFieldElement<T>>
- FieldVector3D<T> estimateRate(final FieldRotation<T> start,
- final FieldRotation<T> end,
- final double dt) {
- final FieldRotation<T> evolution = start.compose(end.revert(), RotationConvention.VECTOR_OPERATOR);
- return new FieldVector3D<T>(evolution.getAngle().divide(dt),
- evolution.getAxis(RotationConvention.VECTOR_OPERATOR));
- }
- /** Revert a FieldRotation<T>/FieldRotation<T>/FieldRotation<T> acceleration triplet.
- * Build a triplet which reverse the effect of another triplet.
- * @return a new triplet whose effect is the reverse of the effect
- * of the instance
- */
- public FieldAngularCoordinates<T> revert() {
- return new FieldAngularCoordinates<T>(rotation.revert(),
- rotation.applyInverseTo(rotationRate.negate()),
- rotation.applyInverseTo(rotationAcceleration.negate()));
- }
- /** Get a time-shifted state.
- * <p>
- * The state can be slightly shifted to close dates. This shift is based on
- * a simple quadratic model. It is <em>not</em> intended as a replacement for
- * proper attitude propagation but should be sufficient for either small
- * time shifts or coarse accuracy.
- * </p>
- * @param dt time shift in seconds
- * @return a new state, shifted with respect to the instance (which is immutable)
- */
- public FieldAngularCoordinates<T> shiftedBy(final double dt) {
- // the shiftedBy method is based on a local approximation.
- // It considers separately the contribution of the constant
- // rotation, the linear contribution or the rate and the
- // quadratic contribution of the acceleration. The rate
- // and acceleration contributions are small rotations as long
- // as the time shift is small, which is the crux of the algorithm.
- // Small rotations are almost commutative, so we append these small
- // contributions one after the other, as if they really occurred
- // successively, despite this is not what really happens.
- // compute the linear contribution first, ignoring acceleration
- // BEWARE: there is really a minus sign here, because if
- // the target frame rotates in one direction, the vectors in the origin
- // frame seem to rotate in the opposite direction
- final T rate = rotationRate.getNorm();
- final T zero = rate.getField().getZero();
- final T one = rate.getField().getOne();
- final FieldRotation<T> rateContribution = (rate.getReal() == 0.0) ?
- new FieldRotation<T>(one, zero, zero, zero, false) :
- new FieldRotation<T>(rotationRate,
- rate.multiply(dt),
- RotationConvention.FRAME_TRANSFORM);
- // append rotation and rate contribution
- final FieldAngularCoordinates<T> linearPart =
- new FieldAngularCoordinates<T>(rateContribution.compose(rotation, RotationConvention.VECTOR_OPERATOR),
- rotationRate);
- final T acc = rotationAcceleration.getNorm();
- if (acc.getReal() == 0.0) {
- // no acceleration, the linear part is sufficient
- return linearPart;
- }
- // compute the quadratic contribution, ignoring initial rotation and rotation rate
- // BEWARE: there is really a minus sign here, because if
- // the target frame rotates in one direction, the vectors in the origin
- // frame seem to rotate in the opposite direction
- final FieldAngularCoordinates<T> quadraticContribution =
- new FieldAngularCoordinates<T>(new FieldRotation<T>(rotationAcceleration,
- acc.multiply(0.5 * dt * dt),
- RotationConvention.FRAME_TRANSFORM),
- new FieldVector3D<T>(dt, rotationAcceleration),
- rotationAcceleration);
- // the quadratic contribution is a small rotation:
- // its initial angle and angular rate are both zero.
- // small rotations are almost commutative, so we append the small
- // quadratic part after the linear part as a simple offset
- return quadraticContribution.addOffset(linearPart);
- }
- /** Get the FieldRotation<T>.
- * @return the FieldRotation<T>.
- */
- public FieldRotation<T> getRotation() {
- return rotation;
- }
- /** Get the FieldRotation<T> rate.
- * @return the FieldRotation<T> rate vector (rad/s).
- */
- public FieldVector3D<T> getRotationRate() {
- return rotationRate;
- }
- /** Get the rotation acceleration.
- * @return the rotation acceleration vector dΩ/dt (rad²/s²).
- */
- public FieldVector3D<T> getRotationAcceleration() {
- return rotationAcceleration;
- }
- /** Add an offset from the instance.
- * <p>
- * We consider here that the offset FieldRotation<T> is applied first and the
- * instance is applied afterward. Note that angular coordinates do <em>not</em>
- * commute under this operation, i.e. {@code a.addOffset(b)} and {@code
- * b.addOffset(a)} lead to <em>different</em> results in most cases.
- * </p>
- * <p>
- * The two methods {@link #addOffset(FieldAngularCoordinates) addOffset} and
- * {@link #subtractOffset(FieldAngularCoordinates) subtractOffset} are designed
- * so that round trip applications are possible. This means that both {@code
- * ac1.subtractOffset(ac2).addOffset(ac2)} and {@code
- * ac1.addOffset(ac2).subtractOffset(ac2)} return angular coordinates equal to ac1.
- * </p>
- * @param offset offset to subtract
- * @return new instance, with offset subtracted
- * @see #subtractOffset(FieldAngularCoordinates)
- */
- public FieldAngularCoordinates<T> addOffset(final FieldAngularCoordinates<T> offset) {
- final FieldVector3D<T> rOmega = rotation.applyTo(offset.rotationRate);
- final FieldVector3D<T> rOmegaDot = rotation.applyTo(offset.rotationAcceleration);
- return new FieldAngularCoordinates<T>(rotation.compose(offset.rotation, RotationConvention.VECTOR_OPERATOR),
- rotationRate.add(rOmega),
- new FieldVector3D<T>( 1.0, rotationAcceleration,
- 1.0, rOmegaDot,
- -1.0, FieldVector3D.crossProduct(rotationRate, rOmega)));
- }
- /** Subtract an offset from the instance.
- * <p>
- * We consider here that the offset Rotation is applied first and the
- * instance is applied afterward. Note that angular coordinates do <em>not</em>
- * commute under this operation, i.e. {@code a.subtractOffset(b)} and {@code
- * b.subtractOffset(a)} lead to <em>different</em> results in most cases.
- * </p>
- * <p>
- * The two methods {@link #addOffset(FieldAngularCoordinates) addOffset} and
- * {@link #subtractOffset(FieldAngularCoordinates) subtractOffset} are designed
- * so that round trip applications are possible. This means that both {@code
- * ac1.subtractOffset(ac2).addOffset(ac2)} and {@code
- * ac1.addOffset(ac2).subtractOffset(ac2)} return angular coordinates equal to ac1.
- * </p>
- * @param offset offset to subtract
- * @return new instance, with offset subtracted
- * @see #addOffset(FieldAngularCoordinates)
- */
- public FieldAngularCoordinates<T> subtractOffset(final FieldAngularCoordinates<T> offset) {
- return addOffset(offset.revert());
- }
- /** Convert to a regular angular coordinates.
- * @return a regular angular coordinates
- */
- public AngularCoordinates toAngularCoordinates() {
- return new AngularCoordinates(rotation.toRotation(), rotationRate.toVector3D(),
- rotationAcceleration.toVector3D());
- }
- /** Interpolate angular coordinates.
- * <p>
- * The interpolated instance is created by polynomial Hermite interpolation
- * on Rodrigues vector ensuring FieldRotation<T> rate remains the exact derivative of FieldRotation<T>.
- * </p>
- * <p>
- * This method is based on Sergei Tanygin's paper <a
- * href="http://www.agi.com/downloads/resources/white-papers/Attitude-interpolation.pdf">Attitude
- * Interpolation</a>, changing the norm of the vector to match the modified Rodrigues
- * vector as described in Malcolm D. Shuster's paper <a
- * href="http://www.ladispe.polito.it/corsi/Meccatronica/02JHCOR/2011-12/Slides/Shuster_Pub_1993h_J_Repsurv_scan.pdf">A
- * Survey of Attitude Representations</a>. This change avoids the singularity at π.
- * There is still a singularity at 2π, which is handled by slightly offsetting all FieldRotation<T>s
- * when this singularity is detected.
- * </p>
- * <p>
- * Note that even if first time derivatives (FieldRotation<T> rates)
- * from sample can be ignored, the interpolated instance always includes
- * interpolated derivatives. This feature can be used explicitly to
- * compute these derivatives when it would be too complex to compute them
- * from an analytical formula: just compute a few sample points from the
- * explicit formula and set the derivatives to zero in these sample points,
- * then use interpolation to add derivatives consistent with the FieldRotation<T>s.
- * </p>
- * @param date interpolation date
- * @param useRotationRates if true, use sample points FieldRotation<T> rates,
- * otherwise ignore them and use only FieldRotation<T>s
- * @param sample sample points on which interpolation should be done
- * @param <T> the type of the field elements
- * @return a new position-velocity, interpolated at specified date
- * @exception OrekitException if the number of point is too small for interpolating
- * @deprecated since 7.0 replaced with {@link TimeStampedFieldAngularCoordinates#interpolate(AbsoluteDate,
- * AngularDerivativesFilter, Collection)}
- */
- @Deprecated
- public static <T extends RealFieldElement<T>>
- FieldAngularCoordinates<T> interpolate(final AbsoluteDate date,
- final boolean useRotationRates,
- final Collection<Pair<AbsoluteDate,
- FieldAngularCoordinates<T>>> sample)
- throws OrekitException {
- final List<TimeStampedFieldAngularCoordinates<T>> list = new ArrayList<TimeStampedFieldAngularCoordinates<T>>(sample.size());
- for (final Pair<AbsoluteDate, FieldAngularCoordinates<T>> pair : sample) {
- list.add(new TimeStampedFieldAngularCoordinates<T>(pair.getFirst(),
- pair.getSecond().getRotation(),
- pair.getSecond().getRotationRate(),
- pair.getSecond().getRotationAcceleration()));
- }
- return TimeStampedFieldAngularCoordinates.interpolate(date,
- useRotationRates ? AngularDerivativesFilter.USE_RR : AngularDerivativesFilter.USE_R,
- list);
- }
- }