FieldOfView.java
- /* Copyright 2002-2019 CS Systèmes d'Information
- * Licensed to CS Systèmes d'Information (CS) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * CS licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.orekit.propagation.events;
- import java.io.Serializable;
- import java.util.ArrayList;
- import java.util.List;
- import org.hipparchus.exception.LocalizedCoreFormats;
- import org.hipparchus.geometry.enclosing.EnclosingBall;
- import org.hipparchus.geometry.euclidean.threed.Line;
- import org.hipparchus.geometry.euclidean.threed.Rotation;
- import org.hipparchus.geometry.euclidean.threed.RotationConvention;
- import org.hipparchus.geometry.euclidean.threed.Vector3D;
- import org.hipparchus.geometry.partitioning.Region;
- import org.hipparchus.geometry.partitioning.RegionFactory;
- import org.hipparchus.geometry.spherical.twod.Edge;
- import org.hipparchus.geometry.spherical.twod.S2Point;
- import org.hipparchus.geometry.spherical.twod.Sphere2D;
- import org.hipparchus.geometry.spherical.twod.SphericalPolygonsSet;
- import org.hipparchus.geometry.spherical.twod.Vertex;
- import org.hipparchus.util.FastMath;
- import org.hipparchus.util.MathUtils;
- import org.orekit.bodies.GeodeticPoint;
- import org.orekit.bodies.OneAxisEllipsoid;
- import org.orekit.errors.OrekitException;
- import org.orekit.errors.OrekitMessages;
- import org.orekit.frames.Frame;
- import org.orekit.frames.Transform;
- import org.orekit.utils.SphericalPolygonsSetTransferObject;
- /** Class representing a spacecraft sensor Field Of View.
- * <p>Fields Of View are zones defined on the unit sphere centered on the
- * spacecraft. They can have any shape, they can be split in several
- * non-connected patches and can have holes.</p>
- * @see org.orekit.propagation.events.FootprintOverlapDetector
- * @author Luc Maisonobe
- * @since 7.1
- */
- public class FieldOfView implements Serializable {
- /** Serializable UID. */
- private static final long serialVersionUID = 20150113L;
- /** Spherical zone. */
- private final transient SphericalPolygonsSet zone;
- /** Margin to apply to the zone. */
- private final double margin;
- /** Spherical cap surrounding the zone. */
- private final transient EnclosingBall<Sphere2D, S2Point> cap;
- /** Build a new instance.
- * @param zone interior of the Field Of View, in spacecraft frame
- * @param margin angular margin to apply to the zone (if positive,
- * the Field Of View will consider points slightly outside of the
- * zone are still visible)
- */
- public FieldOfView(final SphericalPolygonsSet zone, final double margin) {
- this.zone = zone;
- this.margin = margin;
- this.cap = zone.getEnclosingCap();
- }
- /** Build a Field Of View with dihedral shape (i.e. rectangular shape).
- * @param center Direction of the FOV center, in spacecraft frame
- * @param axis1 FOV dihedral axis 1, in spacecraft frame
- * @param halfAperture1 FOV dihedral half aperture angle 1,
- * must be less than π/2, i.e. full dihedra must be smaller then
- * an hemisphere
- * @param axis2 FOV dihedral axis 2, in spacecraft frame
- * @param halfAperture2 FOV dihedral half aperture angle 2,
- * must be less than π/2, i.e. full dihedra must be smaller then
- * an hemisphere
- * @param margin angular margin to apply to the zone (if positive,
- * the Field Of View will consider points slightly outside of the
- * zone are still visible)
- */
- public FieldOfView(final Vector3D center,
- final Vector3D axis1, final double halfAperture1,
- final Vector3D axis2, final double halfAperture2,
- final double margin) {
- // build zone
- final RegionFactory<Sphere2D> factory = new RegionFactory<Sphere2D>();
- final double tolerance = FastMath.max(FastMath.ulp(2.0 * FastMath.PI),
- 1.0e-12 * FastMath.max(halfAperture1, halfAperture2));
- final Region<Sphere2D> dihedra1 = buildDihedra(factory, tolerance, center, axis1, halfAperture1);
- final Region<Sphere2D> dihedra2 = buildDihedra(factory, tolerance, center, axis2, halfAperture2);
- this.zone = (SphericalPolygonsSet) factory.intersection(dihedra1, dihedra2);
- this.margin = margin;
- this.cap = zone.getEnclosingCap();
- }
- /** Build Field Of View with a regular polygon shape.
- * @param center center of the polygon (the center is in the inside part)
- * @param meridian point defining the reference meridian for middle of first edge
- * @param insideRadius distance of the edges middle points to the center
- * (the polygon vertices will therefore be farther away from the center)
- * @param n number of sides of the polygon
- * @param margin angular margin to apply to the zone (if positive,
- * the Field Of View will consider points slightly outside of the
- * zone are still visible)
- */
- public FieldOfView(final Vector3D center, final Vector3D meridian,
- final double insideRadius, final int n, final double margin) {
- // convert the representation based on middle edge points
- // to Hipparchus convention based on vertices
- final Rotation r = new Rotation(center, MathUtils.TWO_PI / n,
- RotationConvention.VECTOR_OPERATOR);
- final Vector3D orthogonal = Vector3D.crossProduct(Vector3D.crossProduct(center, meridian), center);
- final Vector3D firstEdgeNormal = new Vector3D( FastMath.sin(insideRadius), center.normalize(),
- -FastMath.cos(insideRadius), orthogonal.normalize());
- final Vector3D secondEdgeNormal = r.applyTo(firstEdgeNormal);
- final Vector3D vertex = Vector3D.crossProduct(firstEdgeNormal, secondEdgeNormal);
- final double outsideRadius = Vector3D.angle(center, vertex);
- this.zone = new SphericalPolygonsSet(center, vertex, outsideRadius, n, 1.0e-12 * insideRadius);
- this.margin = margin;
- final S2Point[] support = new S2Point[n];
- support[0] = new S2Point(vertex);
- for (int i = 1; i < n; ++i) {
- support[i] = new S2Point(r.applyTo(support[i - 1].getVector()));
- }
- this.cap = new EnclosingBall<Sphere2D, S2Point>(new S2Point(center), outsideRadius, support);
- }
- /** Build a dihedra.
- * @param factory factory for regions
- * @param tolerance tolerance below which points are considered equal
- * @param center Direction of the FOV center, in spacecraft frame
- * @param axis FOV dihedral axis, in spacecraft frame
- * @param halfAperture FOV dihedral half aperture angle,
- * must be less than π/2, i.e. full dihedra must be smaller then
- * an hemisphere
- * @return dihedra
- */
- private Region<Sphere2D> buildDihedra(final RegionFactory<Sphere2D> factory,
- final double tolerance, final Vector3D center,
- final Vector3D axis, final double halfAperture) {
- if (halfAperture > 0.5 * FastMath.PI) {
- throw new OrekitException(LocalizedCoreFormats.OUT_OF_RANGE_SIMPLE,
- halfAperture, 0.0, 0.5 * FastMath.PI);
- }
- final Rotation r = new Rotation(axis, halfAperture, RotationConvention.VECTOR_OPERATOR);
- final Vector3D normalCenterPlane = Vector3D.crossProduct(axis, center);
- final Vector3D normalSidePlus = r.applyInverseTo(normalCenterPlane);
- final Vector3D normalSideMinus = r.applyTo(normalCenterPlane.negate());
- return factory.intersection(new SphericalPolygonsSet(normalSidePlus, tolerance),
- new SphericalPolygonsSet(normalSideMinus, tolerance));
- }
- /** Get the interior zone.
- * @return the interior zone
- */
- public SphericalPolygonsSet getZone() {
- return zone;
- }
- /** Get the angular margin to apply (radians).
- * @return the angular margin to apply (radians)
- */
- public double getMargin() {
- return margin;
- }
- /** Get the angular offset of target point with respect to the Field Of View Boundary.
- * <p>
- * The offset is roughly an angle with respect to the closest boundary point,
- * corrected by the margin and using some approximation far from the Field Of View.
- * It is positive if the target is outside of the Field Of view, negative inside,
- * and zero if the point is exactly on the boundary (always taking the margin
- * into account).
- * </p>
- * <p>
- * As Field Of View can have complex shapes that may require long computation,
- * when the target point can be proven to be outside of the Field Of View, a
- * faster but approximate computation is done, that underestimate the offset.
- * This approximation is only performed about 0.01 radians outside of the zone
- * and is designed to still return a positive value if the full accurate computation
- * would return a positive value. When target point is close to the zone (and
- * furthermore when it is inside the zone), the full accurate computation is
- * performed. This setup allows this offset to be used as a reliable way to
- * detect Field Of View boundary crossings, which correspond to sign changes of
- * the offset.
- * </p>
- * @param lineOfSight line of sight from the center of the Field Of View support
- * unit sphere to the target in Field Of View canonical frame
- * @return an angular offset negative if the target is visible within the Field Of
- * View and positive if it is outside of the Field Of View, including the margin
- * (note that this cannot take into account interposing bodies)
- */
- public double offsetFromBoundary(final Vector3D lineOfSight) {
- final S2Point los = new S2Point(lineOfSight);
- // for faster computation, we start using only the surrounding cap, to filter out
- // far away points (which correspond to most of the points if the Field Of View is small)
- final double crudeDistance = cap.getCenter().distance(los) - cap.getRadius();
- if (crudeDistance - margin > FastMath.max(FastMath.abs(margin), 0.01)) {
- // we know we are strictly outside of the zone,
- // use the crude distance to compute the (positive) return value
- return crudeDistance - margin;
- }
- // we are close, we need to compute carefully the exact offset;
- // we project the point to the closest zone boundary
- return zone.projectToBoundary(los).getOffset() - margin;
- }
- /** Get the footprint of the field Of View on ground.
- * <p>
- * This method assumes the Field Of View is centered on some carrier,
- * which will typically be a spacecraft or a ground station antenna.
- * The points in the footprint boundary loops are all at altitude zero
- * with respect to the ellipsoid, they correspond either to projection
- * on ground of the edges of the Field Of View, or to points on the body
- * limb if the Field Of View goes past horizon. The points on the limb
- * see the carrier origin at zero elevation. If the Field Of View is so
- * large it contains entirely the body, all points will correspond to
- * points at limb. If the Field Of View looks away from body, the
- * boundary loops will be an empty list. The points within footprint
- * the loops are sorted in trigonometric order as seen from the carrier.
- * This implies that someone traveling on ground from one point to the
- * next one will have the points visible from the carrier on his left
- * hand side, and the points not visible from the carrier on his right
- * hand side.
- * </p>
- * <p>
- * The truncation of Field Of View at limb can induce strange results
- * for complex Fields Of View. If for example a Field Of View is a
- * ring with a hole and part of the ring goes past horizon, then instead
- * of having a single loop with a C-shaped boundary, the method will
- * still return two loops truncated at the limb, one clockwise and one
- * counterclockwise, hence "closing" the C-shape twice. This behavior
- * is considered acceptable.
- * </p>
- * <p>
- * If the carrier is a spacecraft, then the {@code fovToBody} transform
- * can be computed from a {@link org.orekit.propagation.SpacecraftState}
- * as follows:
- * </p>
- * <pre>
- * Transform inertToBody = state.getFrame().getTransformTo(body.getBodyFrame(), state.getDate());
- * Transform fovToBody = new Transform(state.getDate(),
- * state.toTransform().getInverse(),
- * inertToBody);
- * </pre>
- * <p>
- * If the carrier is a ground station, located using a topocentric frame
- * and managing its pointing direction using a transform between the
- * dish frame and the topocentric frame, then the {@code fovToBody} transform
- * can be computed as follows:
- * </p>
- * <pre>
- * Transform topoToBody = topocentricFrame.getTransformTo(body.getBodyFrame(), date);
- * Transform topoToDish = ...
- * Transform fovToBody = new Transform(date,
- * topoToDish.getInverse(),
- * topoToBody);
- * </pre>
- * <p>
- * Only the raw zone is used, the angular margin is ignored here.
- * </p>
- * @param fovToBody transform between the frame in which the Field Of View
- * is defined and body frame.
- * @param body body surface the Field Of View will be projected on
- * @param angularStep step used for boundary loops sampling (radians)
- * @return list footprint boundary loops (there may be several independent
- * loops if the Field Of View shape is complex)
- */
- List<List<GeodeticPoint>> getFootprint(final Transform fovToBody, final OneAxisEllipsoid body,
- final double angularStep) {
- final Frame bodyFrame = body.getBodyFrame();
- final Vector3D position = fovToBody.transformPosition(Vector3D.ZERO);
- final double r = position.getNorm();
- if (body.isInside(position)) {
- throw new OrekitException(OrekitMessages.POINT_INSIDE_ELLIPSOID);
- }
- final List<List<GeodeticPoint>> footprint = new ArrayList<List<GeodeticPoint>>();
- final List<Vertex> boundary = zone.getBoundaryLoops();
- for (final Vertex loopStart : boundary) {
- int count = 0;
- final List<GeodeticPoint> loop = new ArrayList<GeodeticPoint>();
- boolean intersectionsFound = false;
- for (Edge edge = loopStart.getOutgoing();
- count == 0 || edge.getStart() != loopStart;
- edge = edge.getEnd().getOutgoing()) {
- ++count;
- final int n = (int) FastMath.ceil(edge.getLength() / angularStep);
- final double delta = edge.getLength() / n;
- for (int i = 0; i < n; ++i) {
- final Vector3D awaySC = new Vector3D(r, edge.getPointAt(i * delta));
- final Vector3D awayBody = fovToBody.transformPosition(awaySC);
- final Line lineOfSight = new Line(position, awayBody, 1.0e-3);
- GeodeticPoint gp = body.getIntersectionPoint(lineOfSight, position,
- bodyFrame, null);
- if (gp != null &&
- Vector3D.dotProduct(awayBody.subtract(position),
- body.transform(gp).subtract(position)) < 0) {
- // the intersection is in fact on the half-line pointing
- // towards the back side, it is a spurious intersection
- gp = null;
- }
- if (gp != null) {
- // the line of sight does intersect the body
- intersectionsFound = true;
- } else {
- // the line of sight does not intersect body
- // we use a point on the limb
- gp = body.transform(body.pointOnLimb(position, awayBody), bodyFrame, null);
- }
- // add the point in front of the list
- // (to ensure the loop will be in trigonometric orientation)
- loop.add(0, gp);
- }
- }
- if (intersectionsFound) {
- // at least some of the points did intersect the body,
- // this loop contributes to the footprint
- footprint.add(loop);
- }
- }
- if (footprint.isEmpty()) {
- // none of the Field Of View loops cross the body
- // either the body is outside of Field Of View, or it is fully contained
- // we check the center
- final Vector3D bodyCenter = fovToBody.getInverse().transformPosition(Vector3D.ZERO);
- if (zone.checkPoint(new S2Point(bodyCenter)) != Region.Location.OUTSIDE) {
- // the body is fully contained in the Field Of View
- // we use the full limb as the footprint
- final Vector3D x = bodyCenter.orthogonal();
- final Vector3D y = Vector3D.crossProduct(bodyCenter, x).normalize();
- final double sinEta = body.getEquatorialRadius() / r;
- final double sinEta2 = sinEta * sinEta;
- final double cosAlpha = (FastMath.cos(angularStep) + sinEta2 - 1) / sinEta2;
- final int n = (int) FastMath.ceil(MathUtils.TWO_PI / FastMath.acos(cosAlpha));
- final double delta = MathUtils.TWO_PI / n;
- final List<GeodeticPoint> loop = new ArrayList<GeodeticPoint>(n);
- for (int i = 0; i < n; ++i) {
- final Vector3D outside = new Vector3D(r * FastMath.cos(i * delta), x,
- r * FastMath.sin(i * delta), y);
- loop.add(body.transform(body.pointOnLimb(position, outside), bodyFrame, null));
- }
- footprint.add(loop);
- }
- }
- return footprint;
- }
- /** Replace the instance with a data transfer object for serialization.
- * @return data transfer object that will be serialized
- */
- private Object writeReplace() {
- return new DTO(this);
- }
- /** Internal class used only for serialization. */
- private static class DTO implements Serializable {
- /** Serializable UID. */
- private static final long serialVersionUID = 20150113L;
- /** Proxy for interior zone. */
- private final SphericalPolygonsSetTransferObject zone;
- /** Angular margin. */
- private final double margin;
- /** Simple constructor.
- * @param fov instance to serialize
- */
- private DTO(final FieldOfView fov) {
- this.zone = new SphericalPolygonsSetTransferObject(fov.zone);
- this.margin = fov.margin;
- }
- /** Replace the deserialized data transfer object with a {@link FieldOfView}.
- * @return replacement {@link FieldOfView}
- */
- private Object readResolve() {
- return new FieldOfView(zone.rebuildZone(), margin);
- }
- }
- }