OneLegRangeRateModel.java
/* Copyright 2022-2026 Romain Serra
* Licensed to CS GROUP (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.estimation.measurements.model;
import org.hipparchus.CalculusFieldElement;
import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
import org.hipparchus.geometry.euclidean.threed.Vector3D;
import org.orekit.estimation.measurements.signal.FieldSignalTravelTimeAdjustableEmitter;
import org.orekit.estimation.measurements.signal.SignalTravelTimeAdjustableEmitter;
import org.orekit.estimation.measurements.signal.SignalTravelTimeModel;
import org.orekit.frames.Frame;
import org.orekit.time.AbsoluteDate;
import org.orekit.time.FieldAbsoluteDate;
import org.orekit.utils.FieldPVCoordinates;
import org.orekit.utils.FieldPVCoordinatesProvider;
import org.orekit.utils.PVCoordinates;
import org.orekit.utils.PVCoordinatesProvider;
import org.orekit.utils.TimeStampedFieldPVCoordinates;
import org.orekit.utils.TimeStampedPVCoordinates;
/**
* Class for one-leg range rate (a.k.a. Doppler measurement).
* A signal is transmitted and received. There is no further assumption.
* @since 14.0
* @author Romain Serra
*/
public class OneLegRangeRateModel {
/** Signal travel time model. */
private final SignalTravelTimeModel signalTravelTimeModel;
/**
* Constructor.
* @param signalTravelTimeModel signal travel time model
*/
public OneLegRangeRateModel(final SignalTravelTimeModel signalTravelTimeModel) {
this.signalTravelTimeModel = signalTravelTimeModel;
}
/**
* Compute measurement without guess.
*
* @param frame frame where position is given
* @param receiverPV receiver position-velocity (at reception)
* @param receptionDate signal reception date
* @param emitter signal initial emitter coordinates provider
* @return ranges on both legs in chronological order (m)
*/
public double value(final Frame frame, final PVCoordinates receiverPV, final AbsoluteDate receptionDate,
final PVCoordinatesProvider emitter) {
return value(frame, receiverPV, receptionDate, emitter, receptionDate);
}
/**
* Compute measurement.
*
* @param frame frame where position is given
* @param receiverPV receiver position-velocity (at reception)
* @param receptionDate signal reception date
* @param emitter signal initial emitter coordinates provider
* @param approxEmissionDate guess for the emission date
* @return ranges on both legs in chronological order (m)
*/
public double value(final Frame frame, final PVCoordinates receiverPV, final AbsoluteDate receptionDate,
final PVCoordinatesProvider emitter, final AbsoluteDate approxEmissionDate) {
final SignalTravelTimeAdjustableEmitter adjustableEmitter = signalTravelTimeModel.getAdjustableEmitterComputer(emitter);
final double delay = adjustableEmitter.computeDelay(approxEmissionDate, receiverPV.getPosition(), receptionDate, frame);
final AbsoluteDate emissionDate = receptionDate.shiftedBy(-delay);
final TimeStampedPVCoordinates emitterPV = emitter.getPVCoordinates(emissionDate, frame);
final Vector3D relativePosition = receiverPV.getPosition().subtract(emitterPV.getPosition());
final Vector3D relativeVelocity = receiverPV.getVelocity().subtract(emitterPV.getVelocity());
return Vector3D.dotProduct(relativeVelocity, relativePosition.normalize());
}
/**
* Compute measurement without guess.
* @param <T> field type
* @param frame frame where position is given
* @param receiverPV receiver position and velocity (at reception)
* @param receptionDate signal reception date
* @param emitter signal initial emitter coordinates provider
* @return range rate (m/s)
*/
public <T extends CalculusFieldElement<T>> T value(final Frame frame, final FieldPVCoordinates<T> receiverPV,
final FieldAbsoluteDate<T> receptionDate,
final FieldPVCoordinatesProvider<T> emitter) {
return value(frame, receiverPV, receptionDate, emitter, receptionDate);
}
/**
* Compute measurement.
* @param <T> field type
* @param frame frame where position is given
* @param receiverPV receiver position and velocity (at reception)
* @param receptionDate signal reception date
* @param emitter signal initial emitter coordinates provider
* @param approxEmissionDate guess for the emission date
* @return range rate (m/s)
*/
public <T extends CalculusFieldElement<T>> T value(final Frame frame, final FieldPVCoordinates<T> receiverPV,
final FieldAbsoluteDate<T> receptionDate,
final FieldPVCoordinatesProvider<T> emitter,
final FieldAbsoluteDate<T> approxEmissionDate) {
final FieldSignalTravelTimeAdjustableEmitter<T> adjustableEmitter = signalTravelTimeModel.getFieldAdjustableEmitterComputer(
receptionDate.getField(), emitter);
final T delay = adjustableEmitter.computeDelay(approxEmissionDate, receiverPV.getPosition(), receptionDate, frame);
final FieldAbsoluteDate<T> emissionDate = receptionDate.shiftedBy(delay.negate());
final TimeStampedFieldPVCoordinates<T> emitterPV = emitter.getPVCoordinates(emissionDate, frame);
final FieldVector3D<T> relativePosition = receiverPV.getPosition().subtract(emitterPV.getPosition());
final FieldVector3D<T> relativeVelocity = receiverPV.getVelocity().subtract(emitterPV.getVelocity());
return FieldVector3D.dotProduct(relativeVelocity, relativePosition.normalize());
}
}