RaDecModel.java
/* Copyright 2022-2026 Romain Serra
* Licensed to CS GROUP (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.estimation.measurements.model;
import org.hipparchus.CalculusFieldElement;
import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
import org.hipparchus.geometry.euclidean.threed.Vector3D;
import org.hipparchus.util.MathArrays;
import org.orekit.errors.OrekitException;
import org.orekit.errors.OrekitMessages;
import org.orekit.estimation.measurements.signal.SignalTravelTimeModel;
import org.orekit.frames.FieldStaticTransform;
import org.orekit.frames.Frame;
import org.orekit.frames.StaticTransform;
import org.orekit.time.AbsoluteDate;
import org.orekit.time.FieldAbsoluteDate;
import org.orekit.utils.FieldPVCoordinatesProvider;
import org.orekit.utils.PVCoordinatesProvider;
/**
* Perfect measurement model for right ascension and declination. It is assumed that the signal reception date is known.
* It is passive in the sense that the sensor did not generate the signal in the first place, it is only collecting it.
* @since 14.0
* @author Romain Serra
*/
public class RaDecModel extends AbstractAngularMeasurementModel {
/** Reference frame defining axis used with right ascension and declination. */
private final Frame referenceFrame;
/**
* Constructor.
* @param referenceFrame reference frame for RA-Dec (must be inertial)
* @param signalTravelTimeModel time delay computer
*/
public RaDecModel(final Frame referenceFrame, final SignalTravelTimeModel signalTravelTimeModel) {
super(signalTravelTimeModel);
if (!referenceFrame.isPseudoInertial()) {
throw new OrekitException(OrekitMessages.NON_PSEUDO_INERTIAL_FRAME, referenceFrame.getName());
}
this.referenceFrame = referenceFrame;
}
/**
* Compute theoretical measurement.
* @param frame frame where receiver position is given
* @param receiverPosition receiver position in input frame at reception time
* @param receptionDate signal reception date
* @param emitter signal emitter coordinates provider
* @return RA-Dec (radians)
*/
public double[] value(final Frame frame, final Vector3D receiverPosition, final AbsoluteDate receptionDate,
final PVCoordinatesProvider emitter) {
return value(frame, receiverPosition, receptionDate, emitter, receptionDate);
}
/**
* Compute theoretical measurement with guess for the emission date.
* @param frame frame where receiver position is given
* @param receiverPosition receiver position in input frame at reception time
* @param receptionDate signal reception date
* @param emitter signal emitter coordinates provider
* @param approxEmissionDate guess for the emission date (shall be adjusted by signal travel time computer)
* @return RA-Dec (radians)
*/
public double[] value(final Frame frame, final Vector3D receiverPosition, final AbsoluteDate receptionDate,
final PVCoordinatesProvider emitter, final AbsoluteDate approxEmissionDate) {
// Compute line-of-sight
final Vector3D apparentLineOfSightInInputFrame = getEmitterToReceiverVector(frame, receiverPosition, receptionDate,
emitter, approxEmissionDate).normalize();
final StaticTransform toInertialFrameAtReception = frame.getStaticTransformTo(referenceFrame, receptionDate);
final Vector3D apparentLineOfSight = toInertialFrameAtReception.transformVector(apparentLineOfSightInInputFrame);
// Compute right ascension and declination
final double rightAscension = apparentLineOfSight.getAlpha();
final double declination = apparentLineOfSight.getDelta();
return new double[] { rightAscension, declination };
}
/**
* Compute theoretical measurement with FIeld.
* @param <T> field type
* @param frame frame where receiver position is given
* @param receiverPosition receiver position in input frame at reception time
* @param receptionDate signal reception date
* @param emitter signal emitter coordinates provider
* @return RA-Dec (radians)
*/
public <T extends CalculusFieldElement<T>> T[] value(final Frame frame, final FieldVector3D<T> receiverPosition,
final FieldAbsoluteDate<T> receptionDate,
final FieldPVCoordinatesProvider<T> emitter) {
return value(frame, receiverPosition, receptionDate, emitter, receptionDate);
}
/**
* Compute theoretical measurement with FIeld with guess for emission date.
* @param <T> field type
* @param frame frame where receiver position is given
* @param receiverPosition receiver position in input frame at reception time
* @param receptionDate signal reception date
* @param emitter signal emitter coordinates provider
* @param approxEmissionDate guess for the emission date (shall be adjusted by signal travel time computer)
* @return RA-Dec (radians)
*/
public <T extends CalculusFieldElement<T>> T[] value(final Frame frame, final FieldVector3D<T> receiverPosition,
final FieldAbsoluteDate<T> receptionDate,
final FieldPVCoordinatesProvider<T> emitter,
final FieldAbsoluteDate<T> approxEmissionDate) {
// Compute line-of-sight
final FieldVector3D<T> apparentLineOfSightInInputFrame = getEmitterToReceiverVector(frame, receiverPosition,
receptionDate, emitter, approxEmissionDate).normalize();
final FieldStaticTransform<T> toInertialFrameAtReception = frame.getStaticTransformTo(referenceFrame, receptionDate);
final FieldVector3D<T> apparentLineOfSight = toInertialFrameAtReception.transformVector(apparentLineOfSightInInputFrame);
// Compute right ascension and declination
final T rightAscension = apparentLineOfSight.getAlpha();
final T declination = apparentLineOfSight.getDelta();
final T[] output = MathArrays.buildArray(receiverPosition.getX().getField(), 2);
output[0] = rightAscension;
output[1] = declination;
return output;
}
}