AngularRaDec.java

/* Copyright 2002-2026 CS GROUP
 * Licensed to CS GROUP (CS) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * CS licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.orekit.estimation.measurements;

import java.util.Map;

import org.hipparchus.analysis.differentiation.Gradient;
import org.hipparchus.geometry.euclidean.threed.Vector3D;
import org.orekit.estimation.measurements.model.RaDecModel;
import org.orekit.estimation.measurements.signal.SignalTravelTimeModel;
import org.orekit.frames.Frame;
import org.orekit.propagation.SpacecraftState;
import org.orekit.time.AbsoluteDate;
import org.orekit.time.FieldAbsoluteDate;
import org.orekit.utils.FieldPVCoordinatesProvider;
import org.orekit.utils.PVCoordinatesProvider;
import org.orekit.utils.TimeStampedFieldPVCoordinates;
import org.orekit.utils.TimeStampedPVCoordinates;

/** Class modeling a Right Ascension - Declination measurement from a ground point (station, telescope).
 * The angles are given using the axes of an inertial reference frame.
 * The date of the measurement corresponds to the reception on ground of the reflected signal.
 *
 * @author Thierry Ceolin
 * @author Maxime Journot
 * @since 9.0
 */
public class AngularRaDec extends GroundBasedAngularMeasurement<AngularRaDec> {

    /** Type of the measurement. */
    public static final String MEASUREMENT_TYPE = "AngularRaDec";

    /** Reference frame in which the right ascension - declination angles are given. */
    private final Frame referenceFrame;

    /** Ground station that receives signal from satellite. */
    private final GroundStation station;

    /** Perfect measurement model. */
    private final RaDecModel measurementModel;

    /** Simple constructor using default light time delay.
     * @param station ground station from which measurement is performed
     * @param referenceFrame Reference frame in which the right ascension - declination angles are given
     * @param date date of the measurement
     * @param angular observed value
     * @param sigma theoretical standard deviation
     * @param baseWeight base weight
     * @param satellite satellite related to this measurement
     * @since 9.3
     */
    public AngularRaDec(final GroundStation station, final Frame referenceFrame, final AbsoluteDate date,
                        final double[] angular, final double[] sigma, final double[] baseWeight,
                        final ObservableSatellite satellite) {
        this(station, referenceFrame, date, angular, sigma, baseWeight, new SignalTravelTimeModel(), satellite);
    }

    /** Constructor.
     * @param station ground station from which measurement is performed
     * @param referenceFrame Reference frame in which the right ascension - declination angles are given
     * @param date date of the measurement
     * @param angular observed value
     * @param sigma theoretical standard deviation
     * @param baseWeight base weight
     * @param signalTravelTimeModel signal travel time model
     * @param satellite satellite related to this measurement
     * @since 14.0
     */
    public AngularRaDec(final GroundStation station, final Frame referenceFrame, final AbsoluteDate date,
                        final double[] angular, final double[] sigma, final double[] baseWeight,
                        final SignalTravelTimeModel signalTravelTimeModel, final ObservableSatellite satellite) {
        super(station, date, angular, sigma, baseWeight, signalTravelTimeModel, satellite);
        this.referenceFrame = referenceFrame;
        this.measurementModel = new RaDecModel(referenceFrame, getSignalTravelTimeModel());
        this.station = station;
    }

    /** Get the reference frame in which the right ascension - declination angles are given.
     * @return reference frame in which the right ascension - declination angles are given
     */
    public Frame getReferenceFrame() {
        return referenceFrame;
    }

    /** {@inheritDoc} */
    @Override
    protected EstimatedMeasurementBase<AngularRaDec> theoreticalEvaluationWithoutDerivatives(final int iteration,
                                                                                             final int evaluation,
                                                                                             final SpacecraftState[] states) {
        // Compute emission date
        final AbsoluteDate receptionDate = getCorrectedReceptionDate();
        final PVCoordinatesProvider receiver = station.getPVCoordinatesProvider();
        final SpacecraftState state = states[0];
        final PVCoordinatesProvider emitter = AbstractMeasurementObject.extractPVCoordinatesProvider(state, state.getPVCoordinates());
        final AbsoluteDate emissionDate = computeEmissionDate(referenceFrame, receiver, receptionDate, emitter);

        // Evaluate angular measurement model (use state frame to avoid rounding error in case reference one is not Earth-centered)
        final Frame frame = state.getFrame();
        final TimeStampedPVCoordinates receiverPV = receiver.getPVCoordinates(receptionDate, frame);
        final double[] raDec = measurementModel.value(frame, receiverPV.getPosition(), receptionDate, emitter, emissionDate);

        // Prepare the estimation
        final double shift = emissionDate.durationFrom(state);
        final SpacecraftState shiftedState = state.shiftedBy(shift);
        final EstimatedMeasurementBase<AngularRaDec> estimated = new EstimatedMeasurementBase<>(this, iteration, evaluation,
                new SpacecraftState[] { shiftedState },
                new TimeStampedPVCoordinates[] { shiftedState.getPVCoordinates(), receiverPV });
        estimated.setEstimatedValue(wrapFirstAngle(raDec[0]), raDec[1]);
        return estimated;
    }

    /** {@inheritDoc} */
    @Override
    protected EstimatedMeasurement<AngularRaDec> theoreticalEvaluation(final int iteration, final int evaluation,
                                                                       final SpacecraftState[] states) {
        // Right Ascension/declination (in reference frame) derivatives are computed with respect to spacecraft state in inertial frame
        // and station parameters
        // ----------------------
        //
        // Parameters:
        //  - 0..2 - Position of the spacecraft in inertial frame
        //  - 3..5 - Velocity of the spacecraft in inertial frame
        //  - 6..n - station parameters (clock offset, station offsets, pole, prime meridian...)

        // Create the parameter indices map
        final Map<String, Integer> paramIndices = station.getParameterIndices(states, getParametersDrivers());
        final int                  nbParams     = 6 * states.length + paramIndices.size();
        final SpacecraftState state = states[0];
        final TimeStampedFieldPVCoordinates<Gradient> pva = AbstractMeasurement.getCoordinates(state, 0, nbParams);

        // Compute emission date
        final FieldAbsoluteDate<Gradient> receptionDate = getCorrectedReceptionDateField(nbParams, paramIndices);
        final FieldPVCoordinatesProvider<Gradient> receiver = station.getFieldPVCoordinatesProvider(nbParams, paramIndices);
        final FieldPVCoordinatesProvider<Gradient> emitter = AbstractMeasurementObject.extractFieldPVCoordinatesProvider(state, pva);
        final FieldAbsoluteDate<Gradient> emissionDate = computeEmissionDateField(referenceFrame, receiver, receptionDate, emitter);

        // Evaluate angular measurement model (use state frame to avoid rounding error in case reference one is not Earth-centered)
        final Frame                frame        = states[0].getFrame();
        final TimeStampedFieldPVCoordinates<Gradient> receiverPV = receiver.getPVCoordinates(receptionDate, frame);
        final Gradient[] raDec = measurementModel.value(frame, receiverPV.getPosition(), receptionDate, emitter, emissionDate);

        // Prepare the estimation
        final double shift = emissionDate.toAbsoluteDate().durationFrom(state);
        final SpacecraftState shiftedState = state.shiftedBy(shift);
        final EstimatedMeasurement<AngularRaDec> estimated = new EstimatedMeasurement<>(this, iteration, evaluation,
                new SpacecraftState[] { shiftedState },
                new TimeStampedPVCoordinates[] { shiftedState.getPVCoordinates(), receiverPV.toTimeStampedPVCoordinates() });
        fillEstimatedMeasurement(raDec[0], raDec[1], paramIndices, estimated);
        return estimated;
    }

    /** Calculate the Line Of Sight of the given measurement.
     * @param outputFrame output frame of the line of sight vector
     * @return Vector3D the line of Sight of the measurement
     * @since 12.0
     */
    public Vector3D getObservedLineOfSight(final Frame outputFrame) {
        return referenceFrame.getStaticTransformTo(outputFrame, getDate())
            .transformVector(new Vector3D(getObservedValue()[0], getObservedValue()[1]));
    }
}