FieldFourierTimeSeries.java

  1. /* Copyright 2022-2025 Thales Alenia Space
  2.  * Licensed to CS GROUP (CS) under one or more
  3.  * contributor license agreements.  See the NOTICE file distributed with
  4.  * this work for additional information regarding copyright ownership.
  5.  * CS licenses this file to You under the Apache License, Version 2.0
  6.  * (the "License"); you may not use this file except in compliance with
  7.  * the License.  You may obtain a copy of the License at
  8.  *
  9.  *   http://www.apache.org/licenses/LICENSE-2.0
  10.  *
  11.  * Unless required by applicable law or agreed to in writing, software
  12.  * distributed under the License is distributed on an "AS IS" BASIS,
  13.  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  14.  * See the License for the specific language governing permissions and
  15.  * limitations under the License.
  16.  */
  17. package org.orekit.models.earth.ionosphere.nequick;

  18. import org.hipparchus.CalculusFieldElement;
  19. import org.hipparchus.util.FastMath;
  20. import org.hipparchus.util.FieldSinCos;
  21. import org.hipparchus.util.MathArrays;
  22. import org.orekit.time.DateTimeComponents;

  23. /**
  24.  * Fourier time series for the NeQuick model.
  25.  * @see NeQuickModel#computeFourierTimeSeries(DateTimeComponents, double)
  26.  * @author Luc Maisonobe
  27.  * @since 13.0.1
  28.  * @param <T> type of the field elements
  29.  */
  30. public class FieldFourierTimeSeries<T extends CalculusFieldElement<T>> {

  31.     /** Date. */
  32.     private final DateTimeComponents dateTime;

  33.     /** Effective ionisation level. */
  34.     private final T az;

  35.     /** Effective sunspot number (Eq. 19). */
  36.     private final T azr;

  37.     /** Fourier time series for foF2. */
  38.     private final T[] cf2;

  39.     /** Fourier time series for M(3000)F2. */
  40.     private final T[] cm3;

  41.     /**
  42.      * Simple constructor.
  43.      * @param dateTime   current date time components
  44.      * @param az         effective ionisation level
  45.      * @param flattenF2  F2 coefficients used by the F2 layer (flatten array)
  46.      * @param flattenFm3 Fm3 coefficients used by the M(3000)F2 layer (flatten array)
  47.      */
  48.     FieldFourierTimeSeries(final DateTimeComponents dateTime, final T az,
  49.                            final double[] flattenF2, final double[] flattenFm3) {

  50.         this.dateTime = dateTime;
  51.         this.az       = az;

  52.         // Effective sunspot number (Eq. 19)
  53.         this.azr = FastMath.sqrt(az.subtract(63.7).multiply(1123.6).add(167273.0)).subtract(408.99);

  54.         // Hours
  55.         final double hours = dateTime.getTime().getSecondsInUTCDay() / 3600.0;

  56.         // Time argument (Eq. 49)
  57.         final double t = FastMath.toRadians(15 * hours) - FastMath.PI;

  58.         // Compute Fourier time series for foF2 and M(3000)F2
  59.         final T[] scT = sinCos(az.newInstance(t), 6);
  60.         this.cf2 = computeCF2(flattenF2, scT);
  61.         this.cm3 = computeCm3(flattenFm3, scT);

  62.     }

  63.     /** Get date time components.
  64.      * @return date time components
  65.      */
  66.     public DateTimeComponents getDateTime() {
  67.         return dateTime;
  68.     }

  69.     /** Get effective ionisation level.
  70.      * @return effective ionisation level
  71.      */
  72.     public T getAz() {
  73.         return az;
  74.     }

  75.     /** Get effective sunspot number.
  76.      * @return effective sunspot number
  77.      */
  78.     public T getAzr() {
  79.         return azr;
  80.     }

  81.     /** Get Fourier time series for foF2.
  82.      * <p>
  83.      * Beware that for efficiency purposes, this method returns
  84.      * a reference to an internal array; this is the reason why
  85.      * this method visibility is limited to package level.
  86.      * </p>
  87.      * @return Fourier time series for foF2 (reference to an internal array)
  88.      */
  89.     T[] getCf2Reference() {
  90.         return cf2;
  91.     }

  92.     /** Get Fourier time series for M(3000)F2.
  93.      * <p>
  94.      * Beware that for efficiency purposes, this method returns
  95.      * a reference to an internal array; this is the reason why
  96.      * this method visibility is limited to package level.
  97.      * </p>
  98.      * @return Fourier time series for M(3000)F2 (reference to an internal array)
  99.      */
  100.     T[] getCm3Reference() {
  101.         return cm3;
  102.     }

  103.     /** Computes cf2 coefficients.
  104.      * @param flattenF2 F2 coefficients used by the F2 layer (flatten array)
  105.      * @param scT       sines/cosines array of time argument
  106.      * @return the cf2 coefficients array
  107.      */
  108.     private T[] computeCF2(final double[] flattenF2, final T[] scT) {

  109.         // interpolation coefficients for effective spot number
  110.         final T azr01 = azr.multiply(0.01);
  111.         final T omazr01 = azr01.negate().add(1);

  112.         // Eq. 44 and Eq. 50 merged into one loop
  113.         final T[] array = MathArrays.buildArray(azr.getField(), 76);
  114.         int index = 0;
  115.         for (int i = 0; i < array.length; i++) {
  116.             // CHECKSTYLE: stop Indentation check
  117.             array[i] = omazr01.multiply(flattenF2[index     ]).add(azr01.multiply(flattenF2[index +  1])).
  118.                    add(omazr01.multiply(flattenF2[index +  2]).add(azr01.multiply(flattenF2[index +  3])).multiply(scT[ 0])).
  119.                    add(omazr01.multiply(flattenF2[index +  4]).add(azr01.multiply(flattenF2[index +  5])).multiply(scT[ 1])).
  120.                    add(omazr01.multiply(flattenF2[index +  6]).add(azr01.multiply(flattenF2[index +  7])).multiply(scT[ 2])).
  121.                    add(omazr01.multiply(flattenF2[index +  8]).add(azr01.multiply(flattenF2[index +  9])).multiply(scT[ 3])).
  122.                    add(omazr01.multiply(flattenF2[index + 10]).add(azr01.multiply(flattenF2[index + 11])).multiply(scT[ 4])).
  123.                    add(omazr01.multiply(flattenF2[index + 12]).add(azr01.multiply(flattenF2[index + 13])).multiply(scT[ 5])).
  124.                    add(omazr01.multiply(flattenF2[index + 14]).add(azr01.multiply(flattenF2[index + 15])).multiply(scT[ 6])).
  125.                    add(omazr01.multiply(flattenF2[index + 16]).add(azr01.multiply(flattenF2[index + 17])).multiply(scT[ 7])).
  126.                    add(omazr01.multiply(flattenF2[index + 18]).add(azr01.multiply(flattenF2[index + 19])).multiply(scT[ 8])).
  127.                    add(omazr01.multiply(flattenF2[index + 20]).add(azr01.multiply(flattenF2[index + 21])).multiply(scT[ 9])).
  128.                    add(omazr01.multiply(flattenF2[index + 22]).add(azr01.multiply(flattenF2[index + 23])).multiply(scT[10])).
  129.                    add(omazr01.multiply(flattenF2[index + 24]).add(azr01.multiply(flattenF2[index + 25])).multiply(scT[11]));
  130.             index += 26;
  131.             // CHECKSTYLE: resume Indentation check
  132.         }
  133.         return array;
  134.     }

  135.     /** Computes Cm3 coefficients.
  136.      * @param flattenFm3 Fm3 coefficients used by the M(3000)F2 layer (flatten array)
  137.      * @param scT        sines/cosines array of time argument
  138.      * @return the Cm3 coefficients array
  139.      */
  140.     private T[] computeCm3(final double[] flattenFm3, final T[] scT) {

  141.         // interpolation coefficients for effective spot number
  142.         final T azr01 = azr.multiply(0.01);
  143.         final T omazr01 = azr01.negate().add(1);

  144.         // Eq. 44 and Eq. 51 merged into one loop
  145.         final T[] array = MathArrays.buildArray(azr.getField(), 49);
  146.         int index = 0;
  147.         for (int i = 0; i < array.length; i++) {
  148.             array[i] = omazr01.multiply(flattenFm3[index     ]).add(azr01.multiply(flattenFm3[index +  1])).
  149.                    add(omazr01.multiply(flattenFm3[index +  2]).add(azr01.multiply(flattenFm3[index +  3])).multiply(scT[ 0])).
  150.                    add(omazr01.multiply(flattenFm3[index +  4]).add(azr01.multiply(flattenFm3[index +  5])).multiply(scT[ 1])).
  151.                    add(omazr01.multiply(flattenFm3[index +  6]).add(azr01.multiply(flattenFm3[index +  7])).multiply(scT[ 2])).
  152.                    add(omazr01.multiply(flattenFm3[index +  8]).add(azr01.multiply(flattenFm3[index +  9])).multiply(scT[ 3])).
  153.                    add(omazr01.multiply(flattenFm3[index + 10]).add(azr01.multiply(flattenFm3[index + 11])).multiply(scT[ 4])).
  154.                    add(omazr01.multiply(flattenFm3[index + 12]).add(azr01.multiply(flattenFm3[index + 13])).multiply(scT[ 5])).
  155.                    add(omazr01.multiply(flattenFm3[index + 14]).add(azr01.multiply(flattenFm3[index + 15])).multiply(scT[ 6])).
  156.                    add(omazr01.multiply(flattenFm3[index + 16]).add(azr01.multiply(flattenFm3[index + 17])).multiply(scT[ 7]));
  157.             index += 18;
  158.         }
  159.         return array;
  160.     }

  161.     /** Compute sines and cosines.
  162.      * @param <T> type of the field elements
  163.      * @param a argument
  164.      * @param n number of terms
  165.      * @return sin(a), cos(a), sin(2a), cos(2a) … sin(n a), cos(n a) array
  166.      */
  167.     static <T extends CalculusFieldElement<T>> T[] sinCos(final T a, final int n) {

  168.         final FieldSinCos<T> sc0 = FastMath.sinCos(a);
  169.         FieldSinCos<T>       sci = sc0;
  170.         final T[] sc = MathArrays.buildArray(a.getField(), 2 * n);
  171.         int isc = 0;
  172.         sc[isc++] = sci.sin();
  173.         sc[isc++] = sci.cos();
  174.         for (int i = 1; i < n; i++) {
  175.             sci = FieldSinCos.sum(sc0, sci);
  176.             sc[isc++] = sci.sin();
  177.             sc[isc++] = sci.cos();
  178.         }

  179.         return sc;

  180.     }

  181. }