AbstractStateTransitionMatrixGenerator.java
- /* Copyright 2002-2025 CS GROUP
- * Licensed to CS GROUP (CS) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * CS licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.orekit.propagation.numerical;
- import org.hipparchus.analysis.differentiation.Gradient;
- import org.hipparchus.exception.LocalizedCoreFormats;
- import org.hipparchus.linear.DecompositionSolver;
- import org.hipparchus.linear.MatrixUtils;
- import org.hipparchus.linear.QRDecomposition;
- import org.hipparchus.linear.RealMatrix;
- import org.hipparchus.util.Precision;
- import org.orekit.attitudes.AttitudeProvider;
- import org.orekit.attitudes.AttitudeProviderModifier;
- import org.orekit.errors.OrekitException;
- import org.orekit.forces.ForceModel;
- import org.orekit.orbits.Orbit;
- import org.orekit.orbits.OrbitType;
- import org.orekit.orbits.PositionAngleType;
- import org.orekit.propagation.FieldSpacecraftState;
- import org.orekit.propagation.SpacecraftState;
- import org.orekit.propagation.integration.AdditionalDerivativesProvider;
- import org.orekit.propagation.integration.CombinedDerivatives;
- import org.orekit.utils.DoubleArrayDictionary;
- import org.orekit.utils.ParameterDriver;
- import org.orekit.utils.TimeSpanMap;
- import java.util.HashMap;
- import java.util.List;
- import java.util.Map;
- /** Abstract generator for numerical State Transition Matrix.
- * @author Luc Maisonobe
- * @author Melina Vanel
- * @author Romain Serra
- * @since 13.1
- */
- abstract class AbstractStateTransitionMatrixGenerator implements AdditionalDerivativesProvider {
- /** Space dimension. */
- protected static final int SPACE_DIMENSION = 3;
- /** Threshold for matrix solving. */
- private static final double THRESHOLD = Precision.SAFE_MIN;
- /** Name of the Cartesian STM additional state. */
- private final String stmName;
- /** Force models used in propagation. */
- private final List<ForceModel> forceModels;
- /** Attitude provider used in propagation. */
- private final AttitudeProvider attitudeProvider;
- /** Observers for partial derivatives. */
- private final Map<String, PartialsObserver> partialsObservers;
- /** Number of state variables. */
- private final int stateDimension;
- /** Dimension of flatten STM. */
- private final int dimension;
- /** Simple constructor.
- * @param stmName name of the Cartesian STM additional state
- * @param forceModels force models used in propagation
- * @param attitudeProvider attitude provider used in propagation
- * @param stateDimension dimension of state vector
- */
- AbstractStateTransitionMatrixGenerator(final String stmName, final List<ForceModel> forceModels,
- final AttitudeProvider attitudeProvider, final int stateDimension) {
- this.stmName = stmName;
- this.forceModels = forceModels;
- this.attitudeProvider = attitudeProvider;
- this.stateDimension = stateDimension;
- this.dimension = stateDimension * stateDimension;
- this.partialsObservers = new HashMap<>();
- }
- /** Register an observer for partial derivatives.
- * <p>
- * The observer {@link PartialsObserver#partialsComputed(SpacecraftState, double[], double[])} partialsComputed}
- * method will be called when partial derivatives are computed, as a side effect of
- * calling {@link #computePartials(SpacecraftState)} (SpacecraftState)}
- * </p>
- * @param name name of the parameter driver this observer is interested in (may be null)
- * @param observer observer to register
- */
- void addObserver(final String name, final PartialsObserver observer) {
- partialsObservers.put(name, observer);
- }
- /** {@inheritDoc} */
- @Override
- public String getName() {
- return stmName;
- }
- /** {@inheritDoc} */
- @Override
- public int getDimension() {
- return dimension;
- }
- /**
- * Getter for the number of state variables.
- * @return state vector dimension
- */
- public int getStateDimension() {
- return stateDimension;
- }
- /**
- * Protected getter for the force models.
- * @return forces
- */
- protected List<ForceModel> getForceModels() {
- return forceModels;
- }
- /**
- * Protected getter for the partials observers map.
- * @return map
- */
- protected Map<String, PartialsObserver> getPartialsObservers() {
- return partialsObservers;
- }
- /**
- * Method to build a linear system solver.
- * @param matrix equations matrix
- * @return solver
- */
- private DecompositionSolver getDecompositionSolver(final RealMatrix matrix) {
- return new QRDecomposition(matrix, THRESHOLD).getSolver();
- }
- /** Set the initial value of the State Transition Matrix.
- * <p>
- * The returned state must be added to the propagator.
- * </p>
- * @param state initial state
- * @param dYdY0 initial State Transition Matrix ∂Y/∂Y₀,
- * if null (which is the most frequent case), assumed to be 6x6 identity
- * @param orbitType orbit type used for states Y and Y₀ in {@code dYdY0}
- * @param positionAngleType position angle used states Y and Y₀ in {@code dYdY0}
- * @return state with initial STM (converted to Cartesian ∂C/∂Y₀) added
- */
- SpacecraftState setInitialStateTransitionMatrix(final SpacecraftState state, final RealMatrix dYdY0,
- final OrbitType orbitType,
- final PositionAngleType positionAngleType) {
- final RealMatrix nonNullDYdY0;
- if (dYdY0 == null) {
- nonNullDYdY0 = MatrixUtils.createRealIdentityMatrix(getStateDimension());
- } else {
- if (dYdY0.getRowDimension() != getStateDimension() ||
- dYdY0.getColumnDimension() != getStateDimension()) {
- throw new OrekitException(LocalizedCoreFormats.DIMENSIONS_MISMATCH_2x2,
- dYdY0.getRowDimension(), dYdY0.getColumnDimension(),
- getStateDimension(), getStateDimension());
- }
- nonNullDYdY0 = dYdY0;
- }
- // convert to Cartesian STM
- final RealMatrix dCdY0;
- if (state.isOrbitDefined()) {
- final RealMatrix dYdC = MatrixUtils.createRealIdentityMatrix(getStateDimension());
- final Orbit orbit = orbitType.convertType(state.getOrbit());
- final double[][] jacobian = new double[6][6];
- orbit.getJacobianWrtCartesian(positionAngleType, jacobian);
- dYdC.setSubMatrix(jacobian, 0, 0);
- final DecompositionSolver decomposition = getDecompositionSolver(dYdC);
- dCdY0 = decomposition.solve(nonNullDYdY0);
- } else {
- dCdY0 = nonNullDYdY0;
- }
- // set additional state
- return state.addAdditionalData(getName(), flatten(dCdY0));
- }
- /**
- * Flattens a matrix into an 1-D array.
- * @param matrix matrix to be flatten
- * @return array
- */
- double[] flatten(final RealMatrix matrix) {
- final double[] flat = new double[getDimension()];
- int k = 0;
- for (int i = 0; i < getStateDimension(); ++i) {
- for (int j = 0; j < getStateDimension(); ++j) {
- flat[k++] = matrix.getEntry(i, j);
- }
- }
- return flat;
- }
- /** {@inheritDoc} */
- @Override
- public boolean yields(final SpacecraftState state) {
- return !state.hasAdditionalData(getName());
- }
- /** {@inheritDoc} */
- public CombinedDerivatives combinedDerivatives(final SpacecraftState state) {
- final double[] factor = computePartials(state);
- // retrieve current State Transition Matrix
- final double[] p = state.getAdditionalState(getName());
- final double[] pDot = new double[p.length];
- // perform multiplication
- multiplyMatrix(factor, p, pDot, getStateDimension());
- return new CombinedDerivatives(pDot, null);
- }
- /** Compute evolution matrix product.
- * @param factor factor matrix
- * @param x right factor of the multiplication, as a flatten array in row major order
- * @param y placeholder where to put the result, as a flatten array in row major order
- * @param columns number of columns of both x and y (so their dimensions are the state one times the columns)
- */
- abstract void multiplyMatrix(double[] factor, double[] x, double[] y, int columns);
- /** Compute the various partial derivatives.
- * @param state current spacecraft state
- * @return factor matrix
- */
- double[] computePartials(final SpacecraftState state) {
- // set up containers for partial derivatives
- final double[] factor = new double[(stateDimension - SPACE_DIMENSION) * stateDimension];
- final DoubleArrayDictionary partialsDictionary = new DoubleArrayDictionary();
- // evaluate contribution of all force models
- final AttitudeProvider equivalentAttitudeProvider = wrapAttitudeProviderIfPossible();
- final boolean isThereAnyForceNotDependingOnlyOnPosition = getForceModels().stream().anyMatch(force -> !force.dependsOnPositionOnly());
- final NumericalGradientConverter posOnlyConverter = new NumericalGradientConverter(state, SPACE_DIMENSION, equivalentAttitudeProvider);
- final NumericalGradientConverter fullConverter = isThereAnyForceNotDependingOnlyOnPosition ?
- new NumericalGradientConverter(state, getStateDimension(), equivalentAttitudeProvider) : posOnlyConverter;
- for (final ForceModel forceModel : getForceModels()) {
- final NumericalGradientConverter converter = forceModel.dependsOnPositionOnly() ? posOnlyConverter : fullConverter;
- final FieldSpacecraftState<Gradient> dsState = converter.getState(forceModel);
- final Gradient[] parameters = converter.getParametersAtStateDate(dsState, forceModel);
- // update partial derivatives w.r.t. state variables
- final Gradient[] ratesPartials = computeRatesPartialsAndUpdateFactor(forceModel, dsState, parameters, factor);
- // partials derivatives with respect to parameters
- updateFactorForParameters(forceModel, converter, ratesPartials, partialsDictionary, state, factor);
- }
- return factor;
- }
- /**
- * Compute with automatic differentiation the partial derivatives of state variables' rate
- * that are not part of the position vector.
- * @param forceModel force model
- * @param fieldState state in Taylor differential algebra
- * @param parameters force parameters in Taylor differential algebra
- * @param factor factor matrix to update
- * @return array of rates in Taylor differential algebra
- */
- abstract Gradient[] computeRatesPartialsAndUpdateFactor(ForceModel forceModel,
- FieldSpacecraftState<Gradient> fieldState,
- Gradient[] parameters, double[] factor);
- /**
- * Update factor regarding partials of force model parameters.
- * @param forceModel force
- * @param converter gradient converter
- * @param ratesPartials state variables' rates evaluated in the Taylor differential algebra
- * @param partialsDictionary dictionary storing the partials
- * @param state spacecraft state
- * @param factor factor matrix (flattened)
- */
- private void updateFactorForParameters(final ForceModel forceModel, final NumericalGradientConverter converter,
- final Gradient[] ratesPartials, final DoubleArrayDictionary partialsDictionary,
- final SpacecraftState state, final double[] factor) {
- int paramsIndex = converter.getFreeStateParameters();
- for (ParameterDriver driver : forceModel.getParametersDrivers()) {
- if (driver.isSelected()) {
- // for each span (for each estimated value) corresponding name is added
- for (TimeSpanMap.Span<String> span = driver.getNamesSpanMap().getFirstSpan(); span != null; span = span.next()) {
- updateDictionaryEntry(partialsDictionary, span, ratesPartials, paramsIndex);
- ++paramsIndex;
- }
- }
- }
- // notify observers
- for (Map.Entry<String, PartialsObserver> observersEntry : getPartialsObservers().entrySet()) {
- final DoubleArrayDictionary.Entry entry = partialsDictionary.getEntry(observersEntry.getKey());
- observersEntry.getValue().partialsComputed(state, factor, entry == null ? new double[ratesPartials.length] : entry.getValue());
- }
- }
- /**
- * Update entry of dictionary with derivative information.
- * @param partialsDictionary dictionary
- * @param span time span
- * @param ratesPartials state variables' rates evaluated in the Taylor differential algebra
- * @param paramsIndex index of parameter as an independent variable of the differential algebra
- */
- private void updateDictionaryEntry(final DoubleArrayDictionary partialsDictionary, final TimeSpanMap.Span<String> span,
- final Gradient[] ratesPartials, final int paramsIndex) {
- // get the partials derivatives for this driver
- DoubleArrayDictionary.Entry entry = partialsDictionary.getEntry(span.getData());
- if (entry == null) {
- // create an entry filled with zeroes
- partialsDictionary.put(span.getData(), new double[ratesPartials.length]);
- entry = partialsDictionary.getEntry(span.getData());
- }
- // add the contribution of the current force model
- final double[] increment = new double[ratesPartials.length];
- for (int i = 0; i < ratesPartials.length; ++i) {
- increment[i] = ratesPartials[i].getGradient()[paramsIndex];
- }
- entry.increment(increment);
- }
- /**
- * Method that first checks if it is possible to replace the attitude provider with a computationally cheaper one
- * to evaluate. If applicable, the new provider only computes the rotation and uses dummy rate and acceleration,
- * since they should not be used later on.
- * @return same provider if at least one forces used attitude derivatives, otherwise one wrapping the old one for
- * the rotation
- */
- AttitudeProvider wrapAttitudeProviderIfPossible() {
- if (forceModels.stream().anyMatch(ForceModel::dependsOnAttitudeRate)) {
- // at least one force uses an attitude rate, need to keep the original provider
- return attitudeProvider;
- } else {
- // the original provider can be replaced by a lighter one for performance
- return AttitudeProviderModifier.getFrozenAttitudeProvider(attitudeProvider);
- }
- }
- /** Interface for observing partials derivatives. */
- @FunctionalInterface
- public interface PartialsObserver {
- /** Callback called when partial derivatives have been computed.
- * @param state current spacecraft state
- * @param factor factor matrix, flattened along rows
- * @param partials partials derivatives of all state variables' rates (except from position) w.r.t. the parameter driver
- * that was registered (zero if no parameters were not selected or parameter is unknown)
- */
- void partialsComputed(SpacecraftState state, double[] factor, double[] partials);
- }
- }