StateTransitionMatrixGenerator.java
- /* Copyright 2002-2025 CS GROUP
- * Licensed to CS GROUP (CS) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * CS licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.orekit.propagation.numerical;
- import org.hipparchus.analysis.differentiation.Gradient;
- import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
- import org.orekit.attitudes.AttitudeProvider;
- import org.orekit.forces.ForceModel;
- import org.orekit.propagation.FieldSpacecraftState;
- import java.util.List;
- /** Generator for State Transition Matrix.
- * The state is made up of the Cartesian position and velocity vectors.
- * @author Luc Maisonobe
- * @author Melina Vanel
- * @since 11.1
- */
- class StateTransitionMatrixGenerator extends AbstractStateTransitionMatrixGenerator {
- /**
- * State dimension.
- */
- public static final int STATE_DIMENSION = 2 * SPACE_DIMENSION;
- /**
- * Simple constructor.
- *
- * @param stmName name of the Cartesian STM additional state
- * @param forceModels force models used in propagation
- * @param attitudeProvider attitude provider used in propagation
- */
- StateTransitionMatrixGenerator(final String stmName, final List<ForceModel> forceModels,
- final AttitudeProvider attitudeProvider) {
- super(stmName, forceModels, attitudeProvider, STATE_DIMENSION);
- }
- /** {@inheritDoc} */
- @Override
- protected void multiplyMatrix(final double[] factor, final double[] x, final double[] y, final int columns) {
- staticMultiplyMatrix(factor, x, y, columns);
- }
- /** Compute evolution matrix product.
- * <p>
- * This method computes \(Y = F \times X\) where the factor matrix is:
- * \[F = \begin{matrix}
- * 0 & 0 & 0 & 1 & 0 & 0 \\
- * 0 & 0 & 0 & 0 & 1 & 0 \\
- * 0 & 0 & 0 & 0 & 0 & 1 \\
- * \sum \frac{da_x}{dp_x} & \sum\frac{da_x}{dp_y} & \sum\frac{da_x}{dp_z} & \sum\frac{da_x}{dv_x} & \sum\frac{da_x}{dv_y} & \sum\frac{da_x}{dv_z}\\
- * \sum \frac{da_y}{dp_x} & \sum\frac{da_y}{dp_y} & \sum\frac{da_y}{dp_z} & \sum\frac{da_y}{dv_x} & \sum\frac{da_y}{dv_y} & \sum\frac{da_y}{dv_z}\\
- * \sum \frac{da_z}{dp_x} & \sum\frac{da_z}{dp_y} & \sum\frac{da_z}{dp_z} & \sum\frac{da_z}{dv_x} & \sum\frac{da_z}{dv_y} & \sum\frac{da_z}{dv_z}
- * \end{matrix}\]
- * </p>
- * @param factor factor matrix
- * @param x right factor of the multiplication, as a flatten array in row major order
- * @param y placeholder where to put the result, as a flatten array in row major order
- * @param columns number of columns of both x and y (so their dimensions are 6 x columns)
- */
- static void staticMultiplyMatrix(final double[] factor, final double[] x, final double[] y, final int columns) {
- final int n = SPACE_DIMENSION * columns;
- // handle first three rows by a simple copy
- System.arraycopy(x, n, y, 0, n);
- // regular multiplication for the last three rows
- for (int j = 0; j < columns; ++j) {
- y[n + j ] = factor[ 0] * x[j ] + factor[ 1] * x[j + columns] + factor[ 2] * x[j + 2 * columns] +
- factor[ 3] * x[j + 3 * columns] + factor[ 4] * x[j + 4 * columns] + factor[ 5] * x[j + 5 * columns];
- y[n + j + columns] = factor[ 6] * x[j ] + factor[ 7] * x[j + columns] + factor[ 8] * x[j + 2 * columns] +
- factor[ 9] * x[j + 3 * columns] + factor[10] * x[j + 4 * columns] + factor[11] * x[j + 5 * columns];
- y[n + j + 2 * columns] = factor[12] * x[j ] + factor[13] * x[j + columns] + factor[14] * x[j + 2 * columns] +
- factor[15] * x[j + 3 * columns] + factor[16] * x[j + 4 * columns] + factor[17] * x[j + 5 * columns];
- }
- }
- /** {@inheritDoc} */
- @Override
- Gradient[] computeRatesPartialsAndUpdateFactor(final ForceModel forceModel,
- final FieldSpacecraftState<Gradient> fieldState,
- final Gradient[] parameters, final double[] factor) {
- final FieldVector3D<Gradient> acceleration = forceModel.acceleration(fieldState, parameters);
- final double[] gradX = acceleration.getX().getGradient();
- final double[] gradY = acceleration.getY().getGradient();
- final double[] gradZ = acceleration.getZ().getGradient();
- // lower left part of the factor matrix
- factor[ 0] += gradX[0];
- factor[ 1] += gradX[1];
- factor[ 2] += gradX[2];
- factor[ 6] += gradY[0];
- factor[ 7] += gradY[1];
- factor[ 8] += gradY[2];
- factor[12] += gradZ[0];
- factor[13] += gradZ[1];
- factor[14] += gradZ[2];
- if (!forceModel.dependsOnPositionOnly()) {
- // lower right part of the factor matrix
- factor[ 3] += gradX[3];
- factor[ 4] += gradX[4];
- factor[ 5] += gradX[5];
- factor[ 9] += gradY[3];
- factor[10] += gradY[4];
- factor[11] += gradY[5];
- factor[15] += gradZ[3];
- factor[16] += gradZ[4];
- factor[17] += gradZ[5];
- }
- return acceleration.toArray();
- }
- }