DSSTTesseralContext.java
- /* Copyright 2002-2025 CS GROUP
 -  * Licensed to CS GROUP (CS) under one or more
 -  * contributor license agreements.  See the NOTICE file distributed with
 -  * this work for additional information regarding copyright ownership.
 -  * CS licenses this file to You under the Apache License, Version 2.0
 -  * (the "License"); you may not use this file except in compliance with
 -  * the License.  You may obtain a copy of the License at
 -  *
 -  *   http://www.apache.org/licenses/LICENSE-2.0
 -  *
 -  * Unless required by applicable law or agreed to in writing, software
 -  * distributed under the License is distributed on an "AS IS" BASIS,
 -  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 -  * See the License for the specific language governing permissions and
 -  * limitations under the License.
 -  */
 - package org.orekit.propagation.semianalytical.dsst.forces;
 
- import org.hipparchus.geometry.euclidean.threed.Vector3D;
 - import org.hipparchus.util.FastMath;
 - import org.hipparchus.util.MathUtils;
 - import org.orekit.forces.gravity.potential.UnnormalizedSphericalHarmonicsProvider;
 - import org.orekit.frames.Frame;
 - import org.orekit.frames.StaticTransform;
 - import org.orekit.propagation.semianalytical.dsst.utilities.AuxiliaryElements;
 
- /**
 -  * This class is a container for the common parameters used in {@link DSSTTesseral}.
 -  * <p>
 -  * It performs parameters initialization at each integration step for the Tesseral contribution
 -  * to the central body gravitational perturbation.
 -  * </p>
 -  * @author Bryan Cazabonne
 -  * @since 10.0
 -  */
 - public class DSSTTesseralContext extends DSSTGravityContext {
 
-     /** Retrograde factor I.
 -      * <p>
 -      *  DSST model needs equinoctial orbit as internal representation.
 -      *  Classical equinoctial elements have discontinuities when inclination
 -      *  is close to zero. In this representation, I = +1. <br>
 -      * To avoid this discontinuity, another representation exists and equinoctial
 -      *  elements can be expressed in a different way, called "retrograde" orbit.
 -      *  This implies I = -1. <br>
 -      *  As Orekit doesn't implement the retrograde orbit, I is always set to +1.
 -      *  But for the sake of consistency with the theory, the retrograde factor
 -      *  has been kept in the formulas.
 -      * </p>
 -      */
 -     private static final int I = 1;
 
-     /** Central body rotation angle θ. */
 -     private final double theta;
 
-     /** ecc². */
 -     private final double e2;
 
-     /** Keplerian period. */
 -     private final double period;
 
-     /** Ratio of satellite period to central body rotation period. */
 -     private final double ratio;
 
-     /**
 -      * Simple constructor.
 -      *
 -      * @param auxiliaryElements auxiliary elements related to the current orbit
 -      * @param centralBodyFrame           rotating body frame
 -      * @param provider                   provider for spherical harmonics
 -      * @param maxFrequencyShortPeriodics maximum value for j
 -      * @param bodyPeriod                 central body rotation period (seconds)
 -      * @param parameters                 values of the force model parameters
 -      */
 -     DSSTTesseralContext(final AuxiliaryElements auxiliaryElements,
 -                         final Frame centralBodyFrame,
 -                         final UnnormalizedSphericalHarmonicsProvider provider,
 -                         final int maxFrequencyShortPeriodics,
 -                         final double bodyPeriod,
 -                         final double[] parameters) {
 
-         super(auxiliaryElements, centralBodyFrame, provider, parameters);
 
-         // Keplerian period
 -         final double a = auxiliaryElements.getSma();
 -         period = (a < 0) ? Double.POSITIVE_INFINITY : MathUtils.TWO_PI / getMeanMotion();
 
-         // Eccentricity square
 -         e2 = auxiliaryElements.getEcc() * auxiliaryElements.getEcc();
 
-         // Central body rotation angle from equation 2.7.1-(3)(4).
 -         final StaticTransform t = getBodyFixedToInertialTransform();
 -         final Vector3D xB = t.transformVector(Vector3D.PLUS_I);
 -         final Vector3D yB = t.transformVector(Vector3D.PLUS_J);
 -         theta = FastMath.atan2(-auxiliaryElements.getVectorF().dotProduct(yB) + I * auxiliaryElements.getVectorG().dotProduct(xB),
 -                 auxiliaryElements.getVectorF().dotProduct(xB) + I * auxiliaryElements.getVectorG().dotProduct(yB));
 
-         // Ratio of satellite to central body periods to define resonant terms
 -         ratio = period / bodyPeriod;
 -     }
 
-     /** Get ecc².
 -      * @return e2
 -      */
 -     public double getE2() {
 -         return e2;
 -     }
 
-     /**
 -      * Get Central body rotation angle θ.
 -      * @return theta
 -      */
 -     public double getTheta() {
 -         return theta;
 -     }
 
-     /**
 -      * Get the Keplerian period.
 -      * <p>
 -      * The Keplerian period is computed directly from semi major axis and central
 -      * acceleration constant.
 -      * </p>
 -      * @return Keplerian period in seconds, or positive infinity for hyperbolic
 -      *         orbits
 -      */
 -     public double getOrbitPeriod() {
 -         return period;
 -     }
 
-     /**
 -      * Get the ratio of satellite period to central body rotation period.
 -      * @return ratio
 -      */
 -     public double getRatio() {
 -         return ratio;
 -     }
 
- }