ConicallyShadowedLightFluxModel.java
/* Copyright 2022-2025 Romain Serra
* Licensed to CS GROUP (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.forces.radiation;
import org.hipparchus.CalculusFieldElement;
import org.hipparchus.Field;
import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
import org.hipparchus.geometry.euclidean.threed.Vector3D;
import org.hipparchus.util.FastMath;
import org.orekit.frames.Frame;
import org.orekit.propagation.FieldSpacecraftState;
import org.orekit.propagation.SpacecraftState;
import org.orekit.propagation.events.intervals.AdaptableInterval;
import org.orekit.propagation.events.EventDetector;
import org.orekit.propagation.events.EventDetectionSettings;
import org.orekit.propagation.events.intervals.FieldAdaptableInterval;
import org.orekit.propagation.events.FieldEventDetector;
import org.orekit.propagation.events.FieldEventDetectionSettings;
import org.orekit.propagation.events.handlers.EventHandler;
import org.orekit.propagation.events.handlers.FieldEventHandler;
import org.orekit.propagation.events.handlers.FieldResetDerivativesOnEvent;
import org.orekit.propagation.events.handlers.ResetDerivativesOnEvent;
import org.orekit.time.AbsoluteDate;
import org.orekit.time.FieldAbsoluteDate;
import org.orekit.utils.ExtendedPositionProvider;
import java.util.ArrayList;
import java.util.List;
/**
* Class defining a flux model from a single occulted body, casting a shadow on a spherical occulting body.
* It cannot model oblate bodies or multiple occulting objects (for this, see {@link SolarRadiationPressure}).
*
* @author Romain Serra
* @see AbstractSolarLightFluxModel
* @see LightFluxModel
* @see "Montenbruck, Oliver, and Gill, Eberhard. Satellite orbits : models, methods, and
* * applications. Berlin New York: Springer, 2000."
* @since 12.2
*/
public class ConicallyShadowedLightFluxModel extends AbstractSolarLightFluxModel {
/**
* Default max. check interval for eclipse detection.
*/
private static final double CONICAL_ECLIPSE_MAX_CHECK = 60;
/**
* Default threshold for eclipse detection.
*/
private static final double CONICAL_ECLIPSE_THRESHOLD = 1e-7;
/** Occulted body radius. */
private final double occultedBodyRadius;
/** Cached date. */
private AbsoluteDate lastDate;
/** Cached frame. */
private Frame propagationFrame;
/** Cached position. */
private Vector3D lastPosition;
/**
* Constructor.
* @param kRef reference flux
* @param occultedBodyRadius radius of occulted body (light source)
* @param occultedBody position provider for light source
* @param occultingBodyRadius radius of central, occulting body
* @param eventDetectionSettings user-defined detection settings for eclipses (if ill-tuned, events might be missed or performance might drop)
*/
public ConicallyShadowedLightFluxModel(final double kRef, final double occultedBodyRadius,
final ExtendedPositionProvider occultedBody,
final double occultingBodyRadius, final EventDetectionSettings eventDetectionSettings) {
super(kRef, occultedBody, occultingBodyRadius, eventDetectionSettings);
this.occultedBodyRadius = occultedBodyRadius;
}
/**
* Constructor with default event detection settings.
* @param kRef reference flux
* @param occultedBodyRadius radius of occulted body (light source)
* @param occultedBody position provider for light source
* @param occultingBodyRadius radius of central, occulting body
*/
public ConicallyShadowedLightFluxModel(final double kRef, final double occultedBodyRadius,
final ExtendedPositionProvider occultedBody, final double occultingBodyRadius) {
this(kRef, occultedBodyRadius, occultedBody, occultingBodyRadius, getDefaultEclipseDetectionSettings());
}
/**
* Constructor with default value for reference flux.
* @param occultedBodyRadius radius of occulted body (light source)
* @param occultedBody position provider for light source
* @param occultingBodyRadius radius of central, occulting body
*/
public ConicallyShadowedLightFluxModel(final double occultedBodyRadius, final ExtendedPositionProvider occultedBody,
final double occultingBodyRadius) {
super(occultedBody, occultingBodyRadius, getDefaultEclipseDetectionSettings());
this.occultedBodyRadius = occultedBodyRadius;
}
/**
* Define default detection settings for eclipses.
* @return default settings
*/
public static EventDetectionSettings getDefaultEclipseDetectionSettings() {
return new EventDetectionSettings(CONICAL_ECLIPSE_MAX_CHECK, CONICAL_ECLIPSE_THRESHOLD,
EventDetectionSettings.DEFAULT_MAX_ITER);
}
/** {@inheritDoc} */
@Override
public void init(final SpacecraftState initialState, final AbsoluteDate targetDate) {
super.init(initialState, targetDate);
lastDate = initialState.getDate();
propagationFrame = initialState.getFrame();
lastPosition = getOccultedBodyPosition(lastDate, propagationFrame);
}
/** {@inheritDoc} */
@Override
public <T extends CalculusFieldElement<T>> void init(final FieldSpacecraftState<T> initialState,
final FieldAbsoluteDate<T> targetDate) {
super.init(initialState, targetDate);
lastDate = initialState.getDate().toAbsoluteDate();
propagationFrame = initialState.getFrame();
lastPosition = getOccultedBodyPosition(initialState.getDate(), propagationFrame).toVector3D();
}
/**
* Get occulted body position using cache.
* @param date date
* @return occulted body position
*/
private Vector3D getOccultedBodyPosition(final AbsoluteDate date) {
if (!lastDate.isEqualTo(date)) {
lastPosition = getOccultedBodyPosition(date, propagationFrame);
lastDate = date;
}
return lastPosition;
}
/**
* Get occulted body position using cache (non-Field and no derivatives case).
* @param fieldDate date
* @param <T> field type
* @return occulted body position
*/
private <T extends CalculusFieldElement<T>> FieldVector3D<T> getOccultedBodyPosition(final FieldAbsoluteDate<T> fieldDate) {
if (fieldDate.hasZeroField()) {
final AbsoluteDate date = fieldDate.toAbsoluteDate();
if (!lastDate.isEqualTo(date)) {
lastPosition = getOccultedBodyPosition(date, propagationFrame);
lastDate = date;
}
return new FieldVector3D<>(fieldDate.getField(), lastPosition);
} else {
return getOccultedBodyPosition(fieldDate, propagationFrame);
}
}
/** {@inheritDoc} */
@Override
protected double getLightingRatio(final Vector3D position, final Vector3D occultedBodyPosition) {
// See Section 3.4.2, Figure 3.8
final double occultingBodyRadius = getOccultingBodyRadius();
final Vector3D relativePosition = occultedBodyPosition.subtract(position);
final double relativeDistance = relativePosition.getNorm();
final double a = FastMath.asin(occultedBodyRadius / relativeDistance);
final double a2 = a * a;
final double r = position.getNorm();
final double b = FastMath.asin(occultingBodyRadius / r);
final double b2 = b * b;
final double c = Vector3D.angle(relativePosition.negate(), position);
final double c2 = c * c;
if (a + b <= c) {
// no occultation
return 1.0;
}
if (a <= b && c + a <= b) {
// may have total eclipse and in umbra
return 0.0;
}
if (a >= b && c + b <= a) {
// occulting body too small for total eclipse
// and maximally eclipsed
// simple ratio of areas
return 1.0 - b2 / a2;
}
final double x = (c2 + a2 - b2) / (2 * c);
final double x2 = x * x;
// expression for (c - x), i.e. BE in Fig 3.8. See #1892
final double cMinusX = (c2 + b2 - a2) / (2 * c);
final double y = FastMath.sqrt(FastMath.max(0., a2 - x2));
// ref Figure 3.8
final double alpha = FastMath.atan2(y, x);
final double beta = FastMath.atan2(y, cMinusX);
// because a, b, c are sides of a triangle, which is verified by the
// three if's above, every expression in ( ... ) must be positive.
final double triangleArea2 =
(-c + a + b) * (c + a - b) * (c - a + b) * (c + a + b) / 4;
// equivalent to c*y, see #1892
final double triangleArea = FastMath.sqrt(triangleArea2);
final double intermediate =
(alpha + (b2 * beta - triangleArea) / a2) / FastMath.PI;
return 1. - intermediate;
}
/** {@inheritDoc} */
@Override
protected <T extends CalculusFieldElement<T>> T getLightingRatio(
final FieldVector3D<T> position,
final FieldVector3D<T> occultedBodyPosition) {
final Field<T> field = position.getX().getField();
final T zero = field.getZero();
final T one = field.getOne();
// See Section 3.4.2, Figure 3.8
final T occultingBodyRadius = zero.add(getOccultingBodyRadius());
final FieldVector3D<T> relativePosition =
occultedBodyPosition.subtract(position);
final T relativeDistance = relativePosition.getNorm();
final T a = zero.add(occultedBodyRadius).divide(relativeDistance).asin();
final T a2 = a.square();
final T r = position.getNorm();
final T b = occultingBodyRadius.divide(r).asin();
final T b2 = b.square();
final T c = FieldVector3D.angle(relativePosition.negate(), position);
final T c2 = c.square();
if (a.add(b).getReal() <= c.getReal()) {
// no occultation
return one;
}
if (a.getReal() <= b.getReal() && c.add(a).getReal() <= b.getReal()) {
// may have total eclipse and in umbra
return zero;
}
if (a.getReal() >= b.getReal() && c.add(b).getReal() <= a.getReal()) {
// occulting body too small for total eclipse
// and maximally eclipsed
// simple ratio of areas
return one.subtract(b2.divide(a2));
}
final T x = c2.add(a2).subtract(b2).divide(c.multiply(2));
final T x2 = x.square();
// expression for (c - x), i.e. BE in Fig 3.8. See #1892
final T cMinusX = c2.add(b2).subtract(a2).divide(c.multiply(2));
final T y = FastMath.sqrt(FastMath.max(zero, a2.subtract(x2)));
// ref Figure 3.8
final T alpha = FastMath.atan2(y, x);
final T beta = FastMath.atan2(y, cMinusX);
// because a, b, c are sides of a triangle, which is verified by the
// three if's above, every expression in ( ... ) must be positive.
final T triangleArea2 = c.negate().add(a).add(b)
.multiply(c.add(a).subtract(b))
.multiply(c.subtract(a).add(b))
.multiply(c.add(a).add(b))
.divide(4);
// equivalent to c*y, see #1892
final T triangleArea = FastMath.sqrt(triangleArea2);
final T intermediate = alpha
.add(b2.multiply(beta).subtract(triangleArea).divide(a2))
.divide(FastMath.PI);
return one.subtract(intermediate);
}
/** {@inheritDoc} */
@Override
public List<EventDetector> getEclipseConditionsDetector() {
final List<EventDetector> detectors = new ArrayList<>();
detectors.add(createUmbraEclipseDetector());
detectors.add(createPenumbraEclipseDetector());
return detectors;
}
/**
* Method to create a new umbra detector.
* @return detector
*/
private InternalEclipseDetector createUmbraEclipseDetector() {
return new InternalEclipseDetector() {
@Override
public double g(final SpacecraftState s) {
final Vector3D position = s.getPosition();
final Vector3D occultedBodyPosition = getOccultedBodyPosition(s.getDate());
final Vector3D occultedBodyDirection = occultedBodyPosition.normalize();
final double s0 = -position.dotProduct(occultedBodyDirection);
final double distanceSun = occultedBodyPosition.getNorm();
final double squaredDistance = position.getNormSq();
final double sinf2 = (occultedBodyRadius - getOccultingBodyRadius()) / distanceSun;
final double l = FastMath.sqrt(squaredDistance - s0 * s0);
final double l2 = (s0 * sinf2 - getOccultingBodyRadius()) / FastMath.sqrt(1.0 - sinf2 * sinf2);
return FastMath.abs(l2) / l - 1.;
}
};
}
/**
* Method to create a new penumbra detector.
* @return detector
*/
private InternalEclipseDetector createPenumbraEclipseDetector() {
return new InternalEclipseDetector() {
@Override
public double g(final SpacecraftState s) {
final Vector3D position = s.getPosition();
final Vector3D occultedBodyPosition = getOccultedBodyPosition(s.getDate());
final Vector3D occultedBodyDirection = occultedBodyPosition.normalize();
final double s0 = -position.dotProduct(occultedBodyDirection);
final double distanceSun = occultedBodyPosition.getNorm();
final double squaredDistance = position.getNormSq();
final double l = FastMath.sqrt(squaredDistance - s0 * s0);
final double sinf1 = (occultedBodyRadius + getOccultingBodyRadius()) / distanceSun;
final double l1 = (s0 * sinf1 + getOccultingBodyRadius()) / FastMath.sqrt(1.0 - sinf1 * sinf1);
return l1 / l - 1.;
}
};
}
/**
* Internal class for event detector.
*/
private abstract class InternalEclipseDetector implements EventDetector {
/** Event handler. */
private final ResetDerivativesOnEvent handler;
/**
* Constructor.
*/
InternalEclipseDetector() {
this.handler = new ResetDerivativesOnEvent();
}
@Override
public EventDetectionSettings getDetectionSettings() {
return getEventDetectionSettings();
}
@Override
public double getThreshold() {
return getDetectionSettings().getThreshold();
}
@Override
public AdaptableInterval getMaxCheckInterval() {
return getDetectionSettings().getMaxCheckInterval();
}
@Override
public int getMaxIterationCount() {
return getDetectionSettings().getMaxIterationCount();
}
@Override
public EventHandler getHandler() {
return handler;
}
}
/** {@inheritDoc} */
@Override
public <T extends CalculusFieldElement<T>> List<FieldEventDetector<T>> getFieldEclipseConditionsDetector(final Field<T> field) {
final List<FieldEventDetector<T>> detectors = new ArrayList<>();
final FieldEventDetectionSettings<T> detectionSettings = new FieldEventDetectionSettings<>(field,
getEventDetectionSettings());
detectors.add(createFieldUmbraEclipseDetector(detectionSettings));
detectors.add(createFieldPenumbraEclipseDetector(detectionSettings));
return detectors;
}
/**
* Method to create a new umbra detector. Field version.
* @param detectionSettings non-Field detection settings
* @param <T> field type
* @return detector
*/
private <T extends CalculusFieldElement<T>> FieldInternalEclipseDetector<T> createFieldUmbraEclipseDetector(final FieldEventDetectionSettings<T> detectionSettings) {
return new FieldInternalEclipseDetector<T>(detectionSettings) {
@Override
public T g(final FieldSpacecraftState<T> s) {
final FieldVector3D<T> position = s.getPosition();
final FieldVector3D<T> occultedBodyPosition = getOccultedBodyPosition(s.getDate());
final FieldVector3D<T> occultedBodyDirection = occultedBodyPosition.normalize();
final T s0 = position.dotProduct(occultedBodyDirection).negate();
final T distanceSun = occultedBodyPosition.getNorm();
final T squaredDistance = position.getNormSq();
final T reciprocalDistanceSun = distanceSun.reciprocal();
final T sinf2 = reciprocalDistanceSun.multiply(occultedBodyRadius - getOccultingBodyRadius());
final T l2 = (s0.multiply(sinf2).subtract(getOccultingBodyRadius())).divide(FastMath.sqrt(sinf2.square().negate().add(1)));
final T l = FastMath.sqrt(squaredDistance.subtract(s0.square()));
return FastMath.abs(l2).divide(l).subtract(1);
}
};
}
/**
* Method to create a new penumbra detector. Field version.
* @param detectionSettings non-Field detection settings
* @param <T> field type
* @return detector
*/
private <T extends CalculusFieldElement<T>> FieldInternalEclipseDetector<T> createFieldPenumbraEclipseDetector(final FieldEventDetectionSettings<T> detectionSettings) {
return new FieldInternalEclipseDetector<T>(detectionSettings) {
@Override
public T g(final FieldSpacecraftState<T> s) {
final FieldVector3D<T> position = s.getPosition();
final FieldVector3D<T> occultedBodyPosition = getOccultedBodyPosition(s.getDate());
final FieldVector3D<T> occultedBodyDirection = occultedBodyPosition.normalize();
final T s0 = position.dotProduct(occultedBodyDirection).negate();
final T distanceSun = occultedBodyPosition.getNorm();
final T squaredDistance = position.getNormSq();
final T reciprocalDistanceSun = distanceSun.reciprocal();
final T sinf1 = reciprocalDistanceSun.multiply(occultedBodyRadius + getOccultingBodyRadius());
final T l1 = (s0.multiply(sinf1).add(getOccultingBodyRadius())).divide(FastMath.sqrt(sinf1.square().negate().add(1)));
final T l = FastMath.sqrt(squaredDistance.subtract(s0.square()));
return l1.divide(l).subtract(1);
}
};
}
/**
* Internal class for event detector.
*/
private abstract static class FieldInternalEclipseDetector<T extends CalculusFieldElement<T>> implements FieldEventDetector<T> {
/** Event handler. */
private final FieldResetDerivativesOnEvent<T> handler;
/** Detection settings. */
private final FieldEventDetectionSettings<T> fieldEventDetectionSettings;
/**
* Constructor.
* @param fieldEventDetectionSettings detection settings
*/
FieldInternalEclipseDetector(final FieldEventDetectionSettings<T> fieldEventDetectionSettings) {
this.handler = new FieldResetDerivativesOnEvent<>();
this.fieldEventDetectionSettings = fieldEventDetectionSettings;
}
@Override
public FieldEventDetectionSettings<T> getDetectionSettings() {
return fieldEventDetectionSettings;
}
@Override
public T getThreshold() {
return getDetectionSettings().getThreshold();
}
@Override
public FieldAdaptableInterval<T> getMaxCheckInterval() {
return getDetectionSettings().getMaxCheckInterval();
}
@Override
public int getMaxIterationCount() {
return getDetectionSettings().getMaxIterationCount();
}
@Override
public FieldEventHandler<T> getHandler() {
return handler;
}
}
}