1 /* Copyright 2002-2020 CS GROUP
2 * Licensed to CS GROUP (CS) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * CS licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17 package org.orekit.attitudes;
18
19 import org.hipparchus.RealFieldElement;
20 import org.hipparchus.geometry.euclidean.threed.FieldRotation;
21 import org.hipparchus.geometry.euclidean.threed.Rotation;
22 import org.hipparchus.geometry.euclidean.threed.RotationConvention;
23 import org.hipparchus.geometry.euclidean.threed.RotationOrder;
24 import org.orekit.errors.OrekitException;
25 import org.orekit.errors.OrekitMessages;
26 import org.orekit.frames.FieldTransform;
27 import org.orekit.frames.Frame;
28 import org.orekit.frames.LOFType;
29 import org.orekit.frames.Transform;
30 import org.orekit.time.AbsoluteDate;
31 import org.orekit.time.FieldAbsoluteDate;
32 import org.orekit.utils.FieldPVCoordinates;
33 import org.orekit.utils.FieldPVCoordinatesProvider;
34 import org.orekit.utils.PVCoordinates;
35 import org.orekit.utils.PVCoordinatesProvider;
36
37
38 /**
39 * Attitude law defined by fixed Roll, Pitch and Yaw angles (in any order)
40 * with respect to a local orbital frame.
41
42 * <p>
43 * The attitude provider is defined as a rotation offset from some local orbital frame.
44 * @author Véronique Pommier-Maurussane
45 */
46 public class LofOffset implements AttitudeProvider {
47
48 /** Type of Local Orbital Frame. */
49 private LOFType type;
50
51 /** Rotation from local orbital frame. */
52 private final Rotation offset;
53
54 /** Inertial frame with respect to which orbit should be computed. */
55 private final Frame inertialFrame;
56
57 /** Create a LOF-aligned attitude.
58 * <p>
59 * Calling this constructor is equivalent to call
60 * {@code LofOffset(inertialFrame, LOFType, RotationOrder.XYZ, 0, 0, 0)}
61 * </p>
62 * @param inertialFrame inertial frame with respect to which orbit should be computed
63 * @param type type of Local Orbital Frame
64 */
65 public LofOffset(final Frame inertialFrame, final LOFType type) {
66 this(inertialFrame, type, RotationOrder.XYZ, 0, 0, 0);
67 }
68
69 /** Creates new instance.
70 * <p>
71 * An important thing to note is that the rotation order and angles signs used here
72 * are compliant with an <em>attitude</em> definition, i.e. they correspond to
73 * a frame that rotate in a field of fixed vectors. So to retrieve the angles
74 * provided here from the Hipparchus underlying rotation, one has to either use the
75 * {@link RotationConvention#VECTOR_OPERATOR} and <em>revert</em> the rotation, or
76 * to use {@link RotationConvention#FRAME_TRANSFORM} as in the following code snippet:
77 * </p>
78 * <pre>
79 * LofOffset law = new LofOffset(inertial, lofType, order, alpha1, alpha2, alpha3);
80 * Rotation offsetAtt = law.getAttitude(orbit).getRotation();
81 * Rotation alignedAtt = new LofOffset(inertial, lofType).getAttitude(orbit).getRotation();
82 * Rotation offsetProper = offsetAtt.compose(alignedAtt.revert(), RotationConvention.VECTOR_OPERATOR);
83 *
84 * // note the call to revert and the conventions in the following statement
85 * double[] anglesV = offsetProper.revert().getAngles(order, RotationConvention.VECTOR_OPERATOR);
86 * System.out.format(Locale.US, "%f == %f%n", alpha1, anglesV[0]);
87 * System.out.format(Locale.US, "%f == %f%n", alpha2, anglesV[1]);
88 * System.out.format(Locale.US, "%f == %f%n", alpha3, anglesV[2]);
89 *
90 * // note the conventions in the following statement
91 * double[] anglesF = offsetProper.getAngles(order, RotationConvention.FRAME_TRANSFORM);
92 * System.out.format(Locale.US, "%f == %f%n", alpha1, anglesF[0]);
93 * System.out.format(Locale.US, "%f == %f%n", alpha2, anglesF[1]);
94 * System.out.format(Locale.US, "%f == %f%n", alpha3, anglesF[2]);
95 * </pre>
96 * @param inertialFrame inertial frame with respect to which orbit should be computed
97 * @param type type of Local Orbital Frame
98 * @param order order of rotations to use for (alpha1, alpha2, alpha3) composition
99 * @param alpha1 angle of the first elementary rotation
100 * @param alpha2 angle of the second elementary rotation
101 * @param alpha3 angle of the third elementary rotation
102 */
103 public LofOffset(final Frame inertialFrame, final LOFType type,
104 final RotationOrder order, final double alpha1,
105 final double alpha2, final double alpha3) {
106 this.type = type;
107 this.offset = new Rotation(order, RotationConvention.VECTOR_OPERATOR, alpha1, alpha2, alpha3).revert();
108 if (!inertialFrame.isPseudoInertial()) {
109 throw new OrekitException(OrekitMessages.NON_PSEUDO_INERTIAL_FRAME,
110 inertialFrame.getName());
111 }
112 this.inertialFrame = inertialFrame;
113 }
114
115
116 /** {@inheritDoc} */
117 public Attitude getAttitude(final PVCoordinatesProvider pvProv,
118 final AbsoluteDate date, final Frame frame) {
119
120 // construction of the local orbital frame, using PV from inertial frame
121 final PVCoordinates pv = pvProv.getPVCoordinates(date, inertialFrame);
122 final Transform inertialToLof = type.transformFromInertial(date, pv);
123
124 // take into account the specified start frame (which may not be an inertial one)
125 final Transform frameToInertial = frame.getTransformTo(inertialFrame, date);
126 final Transformform">Transform frameToLof = new Transform(date, frameToInertial, inertialToLof);
127
128 // compose with offset rotation
129 return new Attitude(date, frame,
130 offset.compose(frameToLof.getRotation(), RotationConvention.VECTOR_OPERATOR),
131 offset.applyTo(frameToLof.getRotationRate()),
132 offset.applyTo(frameToLof.getRotationAcceleration()));
133
134 }
135
136 /** {@inheritDoc} */
137 public <T extends RealFieldElement<T>> FieldAttitude<T> getAttitude(final FieldPVCoordinatesProvider<T> pvProv,
138 final FieldAbsoluteDate<T> date,
139 final Frame frame) {
140
141 // construction of the local orbital frame, using PV from inertial frame
142 final FieldPVCoordinates<T> pv = pvProv.getPVCoordinates(date, inertialFrame);
143 final FieldTransform<T> inertialToLof = type.transformFromInertial(date, pv);
144
145 // take into account the specified start frame (which may not be an inertial one)
146 final FieldTransform<T> frameToInertial = frame.getTransformTo(inertialFrame, date);
147 final FieldTransform<T> frameToLof = new FieldTransform<>(date, frameToInertial, inertialToLof);
148
149 // compose with offset rotation
150 return new FieldAttitude<>(date, frame,
151 frameToLof.getRotation().compose(offset, RotationConvention.FRAME_TRANSFORM),
152 FieldRotation.applyTo(offset, frameToLof.getRotationRate()),
153 FieldRotation.applyTo(offset, frameToLof.getRotationAcceleration()));
154
155 }
156 }