1   /* Copyright 2002-2020 CS GROUP
2    * Licensed to CS GROUP (CS) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * CS licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *   http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  package org.orekit.propagation.semianalytical.dsst.utilities;
18  
19  import org.hipparchus.util.FastMath;
20  
21  /** Interpolation grid where points obey a maximum time gap.
22   * <p>
23   * The grid is adapted to the step considered,
24   * meaning that for short steps, the grid will have numerous points.
25   * </p>
26   *
27   * @author Luc Maisonobe
28   * @since 7.1
29   */
30  public class MaxGapInterpolationGrid implements InterpolationGrid {
31  
32      /** Maximum time gap. */
33      private final double maxGap;
34  
35      /** Constructor.
36       * @param maxGap maximum time gap between interpolation points
37       */
38      public MaxGapInterpolationGrid(final double maxGap) {
39          this.maxGap = maxGap;
40      }
41  
42      /** {@inheritDoc} */
43      @Override
44      public double[] getGridPoints(final double stepStart, final double stepEnd) {
45          final int pointsPerStep = FastMath.max(2, (int) FastMath.ceil(FastMath.abs(stepEnd - stepStart) / maxGap));
46          final double[] grid = new double[pointsPerStep];
47  
48          final double stepSize = (stepEnd - stepStart) / (pointsPerStep - 1);
49          for (int i = 0; i < pointsPerStep; i++) {
50              grid[i] = stepSize * i + stepStart;
51          }
52  
53          return grid;
54      }
55  }