1 /* Copyright 2002-2022 CS GROUP 2 * Licensed to CS GROUP (CS) under one or more 3 * contributor license agreements. See the NOTICE file distributed with 4 * this work for additional information regarding copyright ownership. 5 * CS licenses this file to You under the Apache License, Version 2.0 6 * (the "License"); you may not use this file except in compliance with 7 * the License. You may obtain a copy of the License at 8 * 9 * http://www.apache.org/licenses/LICENSE-2.0 10 * 11 * Unless required by applicable law or agreed to in writing, software 12 * distributed under the License is distributed on an "AS IS" BASIS, 13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 * See the License for the specific language governing permissions and 15 * limitations under the License. 16 */ 17 package org.orekit.time; 18 19 import java.io.Serializable; 20 import java.util.Date; 21 import java.util.TimeZone; 22 23 import org.hipparchus.util.FastMath; 24 import org.hipparchus.util.MathUtils; 25 import org.hipparchus.util.MathUtils.SumAndResidual; 26 import org.orekit.annotation.DefaultDataContext; 27 import org.orekit.data.DataContext; 28 import org.orekit.errors.OrekitException; 29 import org.orekit.errors.OrekitIllegalArgumentException; 30 import org.orekit.errors.OrekitMessages; 31 import org.orekit.utils.Constants; 32 33 34 /** This class represents a specific instant in time. 35 36 * <p>Instances of this class are considered to be absolute in the sense 37 * that each one represent the occurrence of some event and can be compared 38 * to other instances or located in <em>any</em> {@link TimeScale time scale}. In 39 * other words the different locations of an event with respect to two different 40 * time scales (say {@link TAIScale TAI} and {@link UTCScale UTC} for example) are 41 * simply different perspective related to a single object. Only one 42 * <code>AbsoluteDate</code> instance is needed, both representations being available 43 * from this single instance by specifying the time scales as parameter when calling 44 * the ad-hoc methods.</p> 45 * 46 * <p>Since an instance is not bound to a specific time-scale, all methods related 47 * to the location of the date within some time scale require to provide the time 48 * scale as an argument. It is therefore possible to define a date in one time scale 49 * and to use it in another one. An example of such use is to read a date from a file 50 * in UTC and write it in another file in TAI. This can be done as follows:</p> 51 * <pre> 52 * DateTimeComponents utcComponents = readNextDate(); 53 * AbsoluteDate date = new AbsoluteDate(utcComponents, TimeScalesFactory.getUTC()); 54 * writeNextDate(date.getComponents(TimeScalesFactory.getTAI())); 55 * </pre> 56 * 57 * <p>Two complementary views are available:</p> 58 * <ul> 59 * <li><p>location view (mainly for input/output or conversions)</p> 60 * <p>locations represent the coordinate of one event with respect to a 61 * {@link TimeScale time scale}. The related methods are {@link 62 * #AbsoluteDate(DateComponents, TimeComponents, TimeScale)}, {@link 63 * #AbsoluteDate(int, int, int, int, int, double, TimeScale)}, {@link 64 * #AbsoluteDate(int, int, int, TimeScale)}, {@link #AbsoluteDate(Date, 65 * TimeScale)}, {@link #parseCCSDSCalendarSegmentedTimeCode(byte, byte[])}, 66 * {@link #toDate(TimeScale)}, {@link #toString(TimeScale) toString(timeScale)}, 67 * {@link #toString()}, and {@link #timeScalesOffset}.</p> 68 * </li> 69 * <li><p>offset view (mainly for physical computation)</p> 70 * <p>offsets represent either the flow of time between two events 71 * (two instances of the class) or durations. They are counted in seconds, 72 * are continuous and could be measured using only a virtually perfect stopwatch. 73 * The related methods are {@link #AbsoluteDate(AbsoluteDate, double)}, 74 * {@link #parseCCSDSUnsegmentedTimeCode(byte, byte, byte[], AbsoluteDate)}, 75 * {@link #parseCCSDSDaySegmentedTimeCode(byte, byte[], DateComponents)}, 76 * {@link #durationFrom(AbsoluteDate)}, {@link #compareTo(AbsoluteDate)}, {@link #equals(Object)} 77 * and {@link #hashCode()}.</p> 78 * </li> 79 * </ul> 80 * <p> 81 * A few reference epochs which are commonly used in space systems have been defined. These 82 * epochs can be used as the basis for offset computation. The supported epochs are: 83 * {@link #JULIAN_EPOCH}, {@link #MODIFIED_JULIAN_EPOCH}, {@link #FIFTIES_EPOCH}, 84 * {@link #CCSDS_EPOCH}, {@link #GALILEO_EPOCH}, {@link #GPS_EPOCH}, {@link #QZSS_EPOCH} 85 * {@link #J2000_EPOCH}, {@link #JAVA_EPOCH}. 86 * There are also two factory methods {@link #createJulianEpoch(double)} 87 * and {@link #createBesselianEpoch(double)} that can be used to compute other reference 88 * epochs like J1900.0 or B1950.0. 89 * In addition to these reference epochs, two other constants are defined for convenience: 90 * {@link #PAST_INFINITY} and {@link #FUTURE_INFINITY}, which can be used either as dummy 91 * dates when a date is not yet initialized, or for initialization of loops searching for 92 * a min or max date. 93 * </p> 94 * <p> 95 * Instances of the <code>AbsoluteDate</code> class are guaranteed to be immutable. 96 * </p> 97 * @author Luc Maisonobe 98 * @author Evan Ward 99 * @see TimeScale 100 * @see TimeStamped 101 * @see ChronologicalComparator 102 */ 103 public class AbsoluteDate 104 implements TimeStamped, TimeShiftable<AbsoluteDate>, Comparable<AbsoluteDate>, Serializable { 105 106 /** Reference epoch for julian dates: -4712-01-01T12:00:00 Terrestrial Time. 107 * <p>Both <code>java.util.Date</code> and {@link DateComponents} classes 108 * follow the astronomical conventions and consider a year 0 between 109 * years -1 and +1, hence this reference date lies in year -4712 and not 110 * in year -4713 as can be seen in other documents or programs that obey 111 * a different convention (for example the <code>convcal</code> utility).</p> 112 * 113 * <p>This constant uses the {@link DataContext#getDefault() default data context}. 114 * 115 * @see TimeScales#getJulianEpoch() 116 */ 117 @DefaultDataContext 118 public static final AbsoluteDate JULIAN_EPOCH = 119 DataContext.getDefault().getTimeScales().getJulianEpoch(); 120 121 /** Reference epoch for modified julian dates: 1858-11-17T00:00:00 Terrestrial Time. 122 * 123 * <p>This constant uses the {@link DataContext#getDefault() default data context}. 124 * 125 * @see TimeScales#getModifiedJulianEpoch() 126 */ 127 @DefaultDataContext 128 public static final AbsoluteDate MODIFIED_JULIAN_EPOCH = 129 DataContext.getDefault().getTimeScales().getModifiedJulianEpoch(); 130 131 /** Reference epoch for 1950 dates: 1950-01-01T00:00:00 Terrestrial Time. 132 * 133 * <p>This constant uses the {@link DataContext#getDefault() default data context}. 134 * 135 * @see TimeScales#getFiftiesEpoch() 136 */ 137 @DefaultDataContext 138 public static final AbsoluteDate FIFTIES_EPOCH = 139 DataContext.getDefault().getTimeScales().getFiftiesEpoch(); 140 141 /** Reference epoch for CCSDS Time Code Format (CCSDS 301.0-B-4): 142 * 1958-01-01T00:00:00 International Atomic Time (<em>not</em> UTC). 143 * 144 * <p>This constant uses the {@link DataContext#getDefault() default data context}. 145 * 146 * @see TimeScales#getCcsdsEpoch() 147 */ 148 @DefaultDataContext 149 public static final AbsoluteDate CCSDS_EPOCH = 150 DataContext.getDefault().getTimeScales().getCcsdsEpoch(); 151 152 /** Reference epoch for Galileo System Time: 1999-08-22T00:00:00 GST. 153 * 154 * <p>This constant uses the {@link DataContext#getDefault() default data context}. 155 * 156 * @see TimeScales#getGalileoEpoch() 157 */ 158 @DefaultDataContext 159 public static final AbsoluteDate GALILEO_EPOCH = 160 DataContext.getDefault().getTimeScales().getGalileoEpoch(); 161 162 /** Reference epoch for GPS weeks: 1980-01-06T00:00:00 GPS time. 163 * 164 * <p>This constant uses the {@link DataContext#getDefault() default data context}. 165 * 166 * @see TimeScales#getGpsEpoch() 167 */ 168 @DefaultDataContext 169 public static final AbsoluteDate GPS_EPOCH = 170 DataContext.getDefault().getTimeScales().getGpsEpoch(); 171 172 /** Reference epoch for QZSS weeks: 1980-01-06T00:00:00 QZSS time. 173 * 174 * <p>This constant uses the {@link DataContext#getDefault() default data context}. 175 * 176 * @see TimeScales#getQzssEpoch() 177 */ 178 @DefaultDataContext 179 public static final AbsoluteDate QZSS_EPOCH = 180 DataContext.getDefault().getTimeScales().getQzssEpoch(); 181 182 /** Reference epoch for IRNSS weeks: 1999-08-22T00:00:00 IRNSS time. 183 * 184 * <p>This constant uses the {@link DataContext#getDefault() default data context}. 185 * 186 * @see TimeScales#getIrnssEpoch() 187 */ 188 @DefaultDataContext 189 public static final AbsoluteDate IRNSS_EPOCH = 190 DataContext.getDefault().getTimeScales().getIrnssEpoch(); 191 192 /** Reference epoch for BeiDou weeks: 2006-01-01T00:00:00 UTC. 193 * 194 * <p>This constant uses the {@link DataContext#getDefault() default data context}. 195 * 196 * @see TimeScales#getBeidouEpoch() 197 */ 198 @DefaultDataContext 199 public static final AbsoluteDate BEIDOU_EPOCH = 200 DataContext.getDefault().getTimeScales().getBeidouEpoch(); 201 202 /** Reference epoch for GLONASS four-year interval number: 1996-01-01T00:00:00 GLONASS time. 203 * <p>By convention, TGLONASS = UTC + 3 hours.</p> 204 * 205 * <p>This constant uses the {@link DataContext#getDefault() default data context}. 206 * 207 * @see TimeScales#getGlonassEpoch() 208 */ 209 @DefaultDataContext 210 public static final AbsoluteDate GLONASS_EPOCH = 211 DataContext.getDefault().getTimeScales().getGlonassEpoch(); 212 213 /** J2000.0 Reference epoch: 2000-01-01T12:00:00 Terrestrial Time (<em>not</em> UTC). 214 * @see #createJulianEpoch(double) 215 * @see #createBesselianEpoch(double) 216 * 217 * <p>This constant uses the {@link DataContext#getDefault() default data context}. 218 * 219 * @see TimeScales#getJ2000Epoch() 220 */ 221 @DefaultDataContext 222 public static final AbsoluteDate J2000_EPOCH = // TODO 223 DataContext.getDefault().getTimeScales().getJ2000Epoch(); 224 225 /** Java Reference epoch: 1970-01-01T00:00:00 Universal Time Coordinate. 226 * <p> 227 * Between 1968-02-01 and 1972-01-01, UTC-TAI = 4.213 170 0s + (MJD - 39 126) x 0.002 592s. 228 * As on 1970-01-01 MJD = 40587, UTC-TAI = 8.000082s 229 * </p> 230 * 231 * <p>This constant uses the {@link DataContext#getDefault() default data context}. 232 * 233 * @see TimeScales#getJavaEpoch() 234 */ 235 @DefaultDataContext 236 public static final AbsoluteDate JAVA_EPOCH = 237 DataContext.getDefault().getTimeScales().getJavaEpoch(); 238 239 /** 240 * An arbitrary finite date. Uses when a non-null date is needed but its value doesn't 241 * matter. 242 */ 243 public static final AbsoluteDate ARBITRARY_EPOCH = new AbsoluteDate(0, 0); 244 245 /** Dummy date at infinity in the past direction. 246 * @see TimeScales#getPastInfinity() 247 */ 248 public static final AbsoluteDate PAST_INFINITY = ARBITRARY_EPOCH.shiftedBy(Double.NEGATIVE_INFINITY); 249 250 /** Dummy date at infinity in the future direction. 251 * @see TimeScales#getFutureInfinity() 252 */ 253 public static final AbsoluteDate FUTURE_INFINITY = ARBITRARY_EPOCH.shiftedBy(Double.POSITIVE_INFINITY); 254 255 /** Serializable UID. */ 256 private static final long serialVersionUID = 617061803741806846L; 257 258 /** Reference epoch in seconds from 2000-01-01T12:00:00 TAI. 259 * <p>Beware, it is not {@link #J2000_EPOCH} since it is in TAI and not in TT.</p> */ 260 private final long epoch; 261 262 /** Offset from the reference epoch in seconds. */ 263 private final double offset; 264 265 /** Create an instance with a default value ({@link #J2000_EPOCH}). 266 * 267 * <p>This constructor uses the {@link DataContext#getDefault() default data context}. 268 * 269 * @see #AbsoluteDate(DateTimeComponents, TimeScale) 270 */ 271 @DefaultDataContext 272 public AbsoluteDate() { 273 epoch = J2000_EPOCH.epoch; 274 offset = J2000_EPOCH.offset; 275 } 276 277 /** Build an instance from a location (parsed from a string) in a {@link TimeScale time scale}. 278 * <p> 279 * The supported formats for location are mainly the ones defined in ISO-8601 standard, 280 * the exact subset is explained in {@link DateTimeComponents#parseDateTime(String)}, 281 * {@link DateComponents#parseDate(String)} and {@link TimeComponents#parseTime(String)}. 282 * </p> 283 * <p> 284 * As CCSDS ASCII calendar segmented time code is a trimmed down version of ISO-8601, 285 * it is also supported by this constructor. 286 * </p> 287 * @param location location in the time scale, must be in a supported format 288 * @param timeScale time scale 289 * @exception IllegalArgumentException if location string is not in a supported format 290 */ 291 public AbsoluteDate(final String location, final TimeScale timeScale) { 292 this(DateTimeComponents.parseDateTime(location), timeScale); 293 } 294 295 /** Build an instance from a location in a {@link TimeScale time scale}. 296 * @param location location in the time scale 297 * @param timeScale time scale 298 */ 299 public AbsoluteDate(final DateTimeComponents location, final TimeScale timeScale) { 300 this(location.getDate(), location.getTime(), timeScale); 301 } 302 303 /** Build an instance from a location in a {@link TimeScale time scale}. 304 * @param date date location in the time scale 305 * @param time time location in the time scale 306 * @param timeScale time scale 307 */ 308 public AbsoluteDate(final DateComponents date, final TimeComponents time, 309 final TimeScale timeScale) { 310 311 final double seconds = time.getSecond(); 312 final double tsOffset = timeScale.offsetToTAI(date, time); 313 314 // Use 2Sum for high precision. 315 final SumAndResidual sumAndResidual = MathUtils.twoSum(seconds, tsOffset); 316 final long dl = (long) FastMath.floor(sumAndResidual.getSum()); 317 318 offset = (sumAndResidual.getSum() - dl) + sumAndResidual.getResidual(); 319 epoch = 60l * ((date.getJ2000Day() * 24l + time.getHour()) * 60l + 320 time.getMinute() - time.getMinutesFromUTC() - 720l) + dl; 321 322 } 323 324 /** Build an instance from a location in a {@link TimeScale time scale}. 325 * @param year year number (may be 0 or negative for BC years) 326 * @param month month number from 1 to 12 327 * @param day day number from 1 to 31 328 * @param hour hour number from 0 to 23 329 * @param minute minute number from 0 to 59 330 * @param second second number from 0.0 to 60.0 (excluded) 331 * @param timeScale time scale 332 * @exception IllegalArgumentException if inconsistent arguments 333 * are given (parameters out of range) 334 */ 335 public AbsoluteDate(final int year, final int month, final int day, 336 final int hour, final int minute, final double second, 337 final TimeScale timeScale) throws IllegalArgumentException { 338 this(new DateComponents(year, month, day), new TimeComponents(hour, minute, second), timeScale); 339 } 340 341 /** Build an instance from a location in a {@link TimeScale time scale}. 342 * @param year year number (may be 0 or negative for BC years) 343 * @param month month enumerate 344 * @param day day number from 1 to 31 345 * @param hour hour number from 0 to 23 346 * @param minute minute number from 0 to 59 347 * @param second second number from 0.0 to 60.0 (excluded) 348 * @param timeScale time scale 349 * @exception IllegalArgumentException if inconsistent arguments 350 * are given (parameters out of range) 351 */ 352 public AbsoluteDate(final int year, final Month month, final int day, 353 final int hour, final int minute, final double second, 354 final TimeScale timeScale) throws IllegalArgumentException { 355 this(new DateComponents(year, month, day), new TimeComponents(hour, minute, second), timeScale); 356 } 357 358 /** Build an instance from a location in a {@link TimeScale time scale}. 359 * <p>The hour is set to 00:00:00.000.</p> 360 * @param date date location in the time scale 361 * @param timeScale time scale 362 * @exception IllegalArgumentException if inconsistent arguments 363 * are given (parameters out of range) 364 */ 365 public AbsoluteDate(final DateComponents date, final TimeScale timeScale) 366 throws IllegalArgumentException { 367 this(date, TimeComponents.H00, timeScale); 368 } 369 370 /** Build an instance from a location in a {@link TimeScale time scale}. 371 * <p>The hour is set to 00:00:00.000.</p> 372 * @param year year number (may be 0 or negative for BC years) 373 * @param month month number from 1 to 12 374 * @param day day number from 1 to 31 375 * @param timeScale time scale 376 * @exception IllegalArgumentException if inconsistent arguments 377 * are given (parameters out of range) 378 */ 379 public AbsoluteDate(final int year, final int month, final int day, 380 final TimeScale timeScale) throws IllegalArgumentException { 381 this(new DateComponents(year, month, day), TimeComponents.H00, timeScale); 382 } 383 384 /** Build an instance from a location in a {@link TimeScale time scale}. 385 * <p>The hour is set to 00:00:00.000.</p> 386 * @param year year number (may be 0 or negative for BC years) 387 * @param month month enumerate 388 * @param day day number from 1 to 31 389 * @param timeScale time scale 390 * @exception IllegalArgumentException if inconsistent arguments 391 * are given (parameters out of range) 392 */ 393 public AbsoluteDate(final int year, final Month month, final int day, 394 final TimeScale timeScale) throws IllegalArgumentException { 395 this(new DateComponents(year, month, day), TimeComponents.H00, timeScale); 396 } 397 398 /** Build an instance from a location in a {@link TimeScale time scale}. 399 * @param location location in the time scale 400 * @param timeScale time scale 401 */ 402 public AbsoluteDate(final Date location, final TimeScale timeScale) { 403 this(new DateComponents(DateComponents.JAVA_EPOCH, 404 (int) (location.getTime() / 86400000l)), 405 millisToTimeComponents((int) (location.getTime() % 86400000l)), 406 timeScale); 407 } 408 409 /** Build an instance from an elapsed duration since to another instant. 410 * <p>It is important to note that the elapsed duration is <em>not</em> 411 * the difference between two readings on a time scale. As an example, 412 * the duration between the two instants leading to the readings 413 * 2005-12-31T23:59:59 and 2006-01-01T00:00:00 in the {@link UTCScale UTC} 414 * time scale is <em>not</em> 1 second, but a stop watch would have measured 415 * an elapsed duration of 2 seconds between these two instances because a leap 416 * second was introduced at the end of 2005 in this time scale.</p> 417 * <p>This constructor is the reverse of the {@link #durationFrom(AbsoluteDate)} 418 * method.</p> 419 * @param since start instant of the measured duration 420 * @param elapsedDuration physically elapsed duration from the <code>since</code> 421 * instant, as measured in a regular time scale 422 * @see #durationFrom(AbsoluteDate) 423 */ 424 public AbsoluteDate(final AbsoluteDate since, final double elapsedDuration) { 425 // Use 2Sum for high precision. 426 final SumAndResidual sumAndResidual = MathUtils.twoSum(since.offset, elapsedDuration); 427 if (Double.isInfinite(sumAndResidual.getSum())) { 428 offset = sumAndResidual.getSum(); 429 epoch = (sumAndResidual.getSum() < 0) ? Long.MIN_VALUE : Long.MAX_VALUE; 430 } else { 431 final long dl = (long) FastMath.floor(sumAndResidual.getSum()); 432 offset = (sumAndResidual.getSum() - dl) + sumAndResidual.getResidual(); 433 epoch = since.epoch + dl; 434 } 435 } 436 437 /** Build an instance from an apparent clock offset with respect to another 438 * instant <em>in the perspective of a specific {@link TimeScale time scale}</em>. 439 * <p>It is important to note that the apparent clock offset <em>is</em> the 440 * difference between two readings on a time scale and <em>not</em> an elapsed 441 * duration. As an example, the apparent clock offset between the two instants 442 * leading to the readings 2005-12-31T23:59:59 and 2006-01-01T00:00:00 in the 443 * {@link UTCScale UTC} time scale is 1 second, but the elapsed duration is 2 444 * seconds because a leap second has been introduced at the end of 2005 in this 445 * time scale.</p> 446 * <p>This constructor is the reverse of the {@link #offsetFrom(AbsoluteDate, 447 * TimeScale)} method.</p> 448 * @param reference reference instant 449 * @param apparentOffset apparent clock offset from the reference instant 450 * (difference between two readings in the specified time scale) 451 * @param timeScale time scale with respect to which the offset is defined 452 * @see #offsetFrom(AbsoluteDate, TimeScale) 453 */ 454 public AbsoluteDate(final AbsoluteDate reference, final double apparentOffset, 455 final TimeScale timeScale) { 456 this(new DateTimeComponents(reference.getComponents(timeScale), apparentOffset), 457 timeScale); 458 } 459 460 /** Build a date from its internal components. 461 * <p> 462 * This method is reserved for internal used (for example by {@link FieldAbsoluteDate}). 463 * </p> 464 * @param epoch reference epoch in seconds from 2000-01-01T12:00:00 TAI. 465 * (beware, it is not {@link #J2000_EPOCH} since it is in TAI and not in TT) 466 * @param offset offset from the reference epoch in seconds (must be 467 * between 0.0 included and 1.0 excluded) 468 * @since 9.0 469 */ 470 AbsoluteDate(final long epoch, final double offset) { 471 this.epoch = epoch; 472 this.offset = offset; 473 } 474 475 /** Extract time components from a number of milliseconds within the day. 476 * @param millisInDay number of milliseconds within the day 477 * @return time components 478 */ 479 private static TimeComponents millisToTimeComponents(final int millisInDay) { 480 return new TimeComponents(millisInDay / 1000, 0.001 * (millisInDay % 1000)); 481 } 482 483 /** Get the reference epoch in seconds from 2000-01-01T12:00:00 TAI. 484 * <p> 485 * This method is reserved for internal used (for example by {@link FieldAbsoluteDate}). 486 * </p> 487 * <p> 488 * Beware, it is not {@link #J2000_EPOCH} since it is in TAI and not in TT. 489 * </p> 490 * @return reference epoch in seconds from 2000-01-01T12:00:00 TAI 491 * @since 9.0 492 */ 493 long getEpoch() { 494 return epoch; 495 } 496 497 /** Get the offset from the reference epoch in seconds. 498 * <p> 499 * This method is reserved for internal used (for example by {@link FieldAbsoluteDate}). 500 * </p> 501 * @return offset from the reference epoch in seconds 502 * @since 9.0 503 */ 504 double getOffset() { 505 return offset; 506 } 507 508 /** Build an instance from a CCSDS Unsegmented Time Code (CUC). 509 * <p> 510 * CCSDS Unsegmented Time Code is defined in the blue book: 511 * CCSDS Time Code Format (CCSDS 301.0-B-4) published in November 2010 512 * </p> 513 * <p> 514 * If the date to be parsed is formatted using version 3 of the standard 515 * (CCSDS 301.0-B-3 published in 2002) or if the extension of the preamble 516 * field introduced in version 4 of the standard is not used, then the 517 * {@code preambleField2} parameter can be set to 0. 518 * </p> 519 * 520 * <p>This method uses the {@link DataContext#getDefault() default data context} if 521 * the CCSDS epoch is used. 522 * 523 * @param preambleField1 first byte of the field specifying the format, often 524 * not transmitted in data interfaces, as it is constant for a given data interface 525 * @param preambleField2 second byte of the field specifying the format 526 * (added in revision 4 of the CCSDS standard in 2010), often not transmitted in data 527 * interfaces, as it is constant for a given data interface (value ignored if presence 528 * not signaled in {@code preambleField1}) 529 * @param timeField byte array containing the time code 530 * @param agencyDefinedEpoch reference epoch, ignored if the preamble field 531 * specifies the {@link #CCSDS_EPOCH CCSDS reference epoch} is used (and hence 532 * may be null in this case) 533 * @return an instance corresponding to the specified date 534 * @see #parseCCSDSUnsegmentedTimeCode(byte, byte, byte[], AbsoluteDate, AbsoluteDate) 535 */ 536 @DefaultDataContext 537 public static AbsoluteDate parseCCSDSUnsegmentedTimeCode(final byte preambleField1, 538 final byte preambleField2, 539 final byte[] timeField, 540 final AbsoluteDate agencyDefinedEpoch) { 541 return parseCCSDSUnsegmentedTimeCode(preambleField1, preambleField2, timeField, 542 agencyDefinedEpoch, 543 DataContext.getDefault().getTimeScales().getCcsdsEpoch()); 544 } 545 546 /** 547 * Build an instance from a CCSDS Unsegmented Time Code (CUC). 548 * <p> 549 * CCSDS Unsegmented Time Code is defined in the blue book: CCSDS Time Code Format 550 * (CCSDS 301.0-B-4) published in November 2010 551 * </p> 552 * <p> 553 * If the date to be parsed is formatted using version 3 of the standard (CCSDS 554 * 301.0-B-3 published in 2002) or if the extension of the preamble field introduced 555 * in version 4 of the standard is not used, then the {@code preambleField2} parameter 556 * can be set to 0. 557 * </p> 558 * 559 * @param preambleField1 first byte of the field specifying the format, often not 560 * transmitted in data interfaces, as it is constant for a 561 * given data interface 562 * @param preambleField2 second byte of the field specifying the format (added in 563 * revision 4 of the CCSDS standard in 2010), often not 564 * transmitted in data interfaces, as it is constant for a 565 * given data interface (value ignored if presence not 566 * signaled in {@code preambleField1}) 567 * @param timeField byte array containing the time code 568 * @param agencyDefinedEpoch reference epoch, ignored if the preamble field specifies 569 * the {@link #CCSDS_EPOCH CCSDS reference epoch} is used 570 * (and hence may be null in this case) 571 * @param ccsdsEpoch reference epoch, ignored if the preamble field specifies 572 * the agency epoch is used. 573 * @return an instance corresponding to the specified date 574 * @since 10.1 575 */ 576 public static AbsoluteDate parseCCSDSUnsegmentedTimeCode( 577 final byte preambleField1, 578 final byte preambleField2, 579 final byte[] timeField, 580 final AbsoluteDate agencyDefinedEpoch, 581 final AbsoluteDate ccsdsEpoch) { 582 583 // time code identification and reference epoch 584 final AbsoluteDate epoch; 585 switch (preambleField1 & 0x70) { 586 case 0x10: 587 // the reference epoch is CCSDS epoch 1958-01-01T00:00:00 TAI 588 epoch = ccsdsEpoch; 589 break; 590 case 0x20: 591 // the reference epoch is agency defined 592 if (agencyDefinedEpoch == null) { 593 throw new OrekitException(OrekitMessages.CCSDS_DATE_MISSING_AGENCY_EPOCH); 594 } 595 epoch = agencyDefinedEpoch; 596 break; 597 default : 598 throw new OrekitException(OrekitMessages.CCSDS_DATE_INVALID_PREAMBLE_FIELD, 599 formatByte(preambleField1)); 600 } 601 602 // time field lengths 603 int coarseTimeLength = 1 + ((preambleField1 & 0x0C) >>> 2); 604 int fineTimeLength = preambleField1 & 0x03; 605 606 if ((preambleField1 & 0x80) != 0x0) { 607 // there is an additional octet in preamble field 608 coarseTimeLength += (preambleField2 & 0x60) >>> 5; 609 fineTimeLength += (preambleField2 & 0x1C) >>> 2; 610 } 611 612 if (timeField.length != coarseTimeLength + fineTimeLength) { 613 throw new OrekitException(OrekitMessages.CCSDS_DATE_INVALID_LENGTH_TIME_FIELD, 614 timeField.length, coarseTimeLength + fineTimeLength); 615 } 616 617 double seconds = 0; 618 for (int i = 0; i < coarseTimeLength; ++i) { 619 seconds = seconds * 256 + toUnsigned(timeField[i]); 620 } 621 double subseconds = 0; 622 for (int i = timeField.length - 1; i >= coarseTimeLength; --i) { 623 subseconds = (subseconds + toUnsigned(timeField[i])) / 256; 624 } 625 626 return new AbsoluteDate(epoch, seconds).shiftedBy(subseconds); 627 628 } 629 630 /** Build an instance from a CCSDS Day Segmented Time Code (CDS). 631 * <p> 632 * CCSDS Day Segmented Time Code is defined in the blue book: 633 * CCSDS Time Code Format (CCSDS 301.0-B-4) published in November 2010 634 * </p> 635 * 636 * <p>This method uses the {@link DataContext#getDefault() default data context}. 637 * 638 * @param preambleField field specifying the format, often not transmitted in 639 * data interfaces, as it is constant for a given data interface 640 * @param timeField byte array containing the time code 641 * @param agencyDefinedEpoch reference epoch, ignored if the preamble field 642 * specifies the {@link #CCSDS_EPOCH CCSDS reference epoch} is used (and hence 643 * may be null in this case) 644 * @return an instance corresponding to the specified date 645 * @see #parseCCSDSDaySegmentedTimeCode(byte, byte[], DateComponents, TimeScale) 646 */ 647 @DefaultDataContext 648 public static AbsoluteDate parseCCSDSDaySegmentedTimeCode(final byte preambleField, final byte[] timeField, 649 final DateComponents agencyDefinedEpoch) { 650 return parseCCSDSDaySegmentedTimeCode(preambleField, timeField, 651 agencyDefinedEpoch, DataContext.getDefault().getTimeScales().getUTC()); 652 } 653 654 /** Build an instance from a CCSDS Day Segmented Time Code (CDS). 655 * <p> 656 * CCSDS Day Segmented Time Code is defined in the blue book: 657 * CCSDS Time Code Format (CCSDS 301.0-B-4) published in November 2010 658 * </p> 659 * @param preambleField field specifying the format, often not transmitted in 660 * data interfaces, as it is constant for a given data interface 661 * @param timeField byte array containing the time code 662 * @param agencyDefinedEpoch reference epoch, ignored if the preamble field 663 * specifies the {@link #CCSDS_EPOCH CCSDS reference epoch} is used (and hence 664 * may be null in this case) 665 * @param utc time scale used to compute date and time components. 666 * @return an instance corresponding to the specified date 667 * @since 10.1 668 */ 669 public static AbsoluteDate parseCCSDSDaySegmentedTimeCode( 670 final byte preambleField, 671 final byte[] timeField, 672 final DateComponents agencyDefinedEpoch, 673 final TimeScale utc) { 674 675 // time code identification 676 if ((preambleField & 0xF0) != 0x40) { 677 throw new OrekitException(OrekitMessages.CCSDS_DATE_INVALID_PREAMBLE_FIELD, 678 formatByte(preambleField)); 679 } 680 681 // reference epoch 682 final DateComponents epoch; 683 if ((preambleField & 0x08) == 0x00) { 684 // the reference epoch is CCSDS epoch 1958-01-01T00:00:00 TAI 685 epoch = DateComponents.CCSDS_EPOCH; 686 } else { 687 // the reference epoch is agency defined 688 if (agencyDefinedEpoch == null) { 689 throw new OrekitException(OrekitMessages.CCSDS_DATE_MISSING_AGENCY_EPOCH); 690 } 691 epoch = agencyDefinedEpoch; 692 } 693 694 // time field lengths 695 final int daySegmentLength = ((preambleField & 0x04) == 0x0) ? 2 : 3; 696 final int subMillisecondLength = (preambleField & 0x03) << 1; 697 if (subMillisecondLength == 6) { 698 throw new OrekitException(OrekitMessages.CCSDS_DATE_INVALID_PREAMBLE_FIELD, 699 formatByte(preambleField)); 700 } 701 if (timeField.length != daySegmentLength + 4 + subMillisecondLength) { 702 throw new OrekitException(OrekitMessages.CCSDS_DATE_INVALID_LENGTH_TIME_FIELD, 703 timeField.length, daySegmentLength + 4 + subMillisecondLength); 704 } 705 706 707 int i = 0; 708 int day = 0; 709 while (i < daySegmentLength) { 710 day = day * 256 + toUnsigned(timeField[i++]); 711 } 712 713 long milliInDay = 0l; 714 while (i < daySegmentLength + 4) { 715 milliInDay = milliInDay * 256 + toUnsigned(timeField[i++]); 716 } 717 final int milli = (int) (milliInDay % 1000l); 718 final int seconds = (int) ((milliInDay - milli) / 1000l); 719 720 double subMilli = 0; 721 double divisor = 1; 722 while (i < timeField.length) { 723 subMilli = subMilli * 256 + toUnsigned(timeField[i++]); 724 divisor *= 1000; 725 } 726 727 final DateComponents date = new DateComponents(epoch, day); 728 final TimeComponents time = new TimeComponents(seconds); 729 return new AbsoluteDate(date, time, utc).shiftedBy(milli * 1.0e-3 + subMilli / divisor); 730 731 } 732 733 /** Build an instance from a CCSDS Calendar Segmented Time Code (CCS). 734 * <p> 735 * CCSDS Calendar Segmented Time Code is defined in the blue book: 736 * CCSDS Time Code Format (CCSDS 301.0-B-4) published in November 2010 737 * </p> 738 * 739 * <p>This method uses the {@link DataContext#getDefault() default data context}. 740 * 741 * @param preambleField field specifying the format, often not transmitted in 742 * data interfaces, as it is constant for a given data interface 743 * @param timeField byte array containing the time code 744 * @return an instance corresponding to the specified date 745 * @see #parseCCSDSCalendarSegmentedTimeCode(byte, byte[], TimeScale) 746 */ 747 @DefaultDataContext 748 public static AbsoluteDate parseCCSDSCalendarSegmentedTimeCode(final byte preambleField, final byte[] timeField) { 749 return parseCCSDSCalendarSegmentedTimeCode(preambleField, timeField, 750 DataContext.getDefault().getTimeScales().getUTC()); 751 } 752 753 /** Build an instance from a CCSDS Calendar Segmented Time Code (CCS). 754 * <p> 755 * CCSDS Calendar Segmented Time Code is defined in the blue book: 756 * CCSDS Time Code Format (CCSDS 301.0-B-4) published in November 2010 757 * </p> 758 * @param preambleField field specifying the format, often not transmitted in 759 * data interfaces, as it is constant for a given data interface 760 * @param timeField byte array containing the time code 761 * @param utc time scale used to compute date and time components. 762 * @return an instance corresponding to the specified date 763 * @since 10.1 764 */ 765 public static AbsoluteDate parseCCSDSCalendarSegmentedTimeCode( 766 final byte preambleField, 767 final byte[] timeField, 768 final TimeScale utc) { 769 770 // time code identification 771 if ((preambleField & 0xF0) != 0x50) { 772 throw new OrekitException(OrekitMessages.CCSDS_DATE_INVALID_PREAMBLE_FIELD, 773 formatByte(preambleField)); 774 } 775 776 // time field length 777 final int length = 7 + (preambleField & 0x07); 778 if (length == 14) { 779 throw new OrekitException(OrekitMessages.CCSDS_DATE_INVALID_PREAMBLE_FIELD, 780 formatByte(preambleField)); 781 } 782 if (timeField.length != length) { 783 throw new OrekitException(OrekitMessages.CCSDS_DATE_INVALID_LENGTH_TIME_FIELD, 784 timeField.length, length); 785 } 786 787 // date part in the first four bytes 788 final DateComponents date; 789 if ((preambleField & 0x08) == 0x00) { 790 // month of year and day of month variation 791 date = new DateComponents(toUnsigned(timeField[0]) * 256 + toUnsigned(timeField[1]), 792 toUnsigned(timeField[2]), 793 toUnsigned(timeField[3])); 794 } else { 795 // day of year variation 796 date = new DateComponents(toUnsigned(timeField[0]) * 256 + toUnsigned(timeField[1]), 797 toUnsigned(timeField[2]) * 256 + toUnsigned(timeField[3])); 798 } 799 800 // time part from bytes 5 to last (between 7 and 13 depending on precision) 801 final TimeComponents time = new TimeComponents(toUnsigned(timeField[4]), 802 toUnsigned(timeField[5]), 803 toUnsigned(timeField[6])); 804 double subSecond = 0; 805 double divisor = 1; 806 for (int i = 7; i < length; ++i) { 807 subSecond = subSecond * 100 + toUnsigned(timeField[i]); 808 divisor *= 100; 809 } 810 811 return new AbsoluteDate(date, time, utc).shiftedBy(subSecond / divisor); 812 813 } 814 815 /** Decode a signed byte as an unsigned int value. 816 * @param b byte to decode 817 * @return an unsigned int value 818 */ 819 private static int toUnsigned(final byte b) { 820 final int i = (int) b; 821 return (i < 0) ? 256 + i : i; 822 } 823 824 /** Format a byte as an hex string for error messages. 825 * @param data byte to format 826 * @return a formatted string 827 */ 828 private static String formatByte(final byte data) { 829 return "0x" + Integer.toHexString(data).toUpperCase(); 830 } 831 832 /** Build an instance corresponding to a Julian Day date. 833 * @param jd Julian day 834 * @param secondsSinceNoon seconds in the Julian day 835 * (BEWARE, Julian days start at noon, so 0.0 is noon) 836 * @param timeScale time scale in which the seconds in day are defined 837 * @return a new instant 838 */ 839 public static AbsoluteDate createJDDate(final int jd, final double secondsSinceNoon, 840 final TimeScale timeScale) { 841 return new AbsoluteDate(new DateComponents(DateComponents.JULIAN_EPOCH, jd), 842 TimeComponents.H12, timeScale).shiftedBy(secondsSinceNoon); 843 } 844 845 /** Build an instance corresponding to a Modified Julian Day date. 846 * @param mjd modified Julian day 847 * @param secondsInDay seconds in the day 848 * @param timeScale time scale in which the seconds in day are defined 849 * @return a new instant 850 * @exception OrekitIllegalArgumentException if seconds number is out of range 851 */ 852 public static AbsoluteDate createMJDDate(final int mjd, final double secondsInDay, 853 final TimeScale timeScale) 854 throws OrekitIllegalArgumentException { 855 final DateComponents dc = new DateComponents(DateComponents.MODIFIED_JULIAN_EPOCH, mjd); 856 final TimeComponents tc; 857 if (secondsInDay >= Constants.JULIAN_DAY) { 858 // check we are really allowed to use this number of seconds 859 final int secondsA = 86399; // 23:59:59, i.e. 59s in the last minute of the day 860 final double secondsB = secondsInDay - secondsA; 861 final TimeComponents safeTC = new TimeComponents(secondsA, 0.0); 862 final AbsoluteDate safeDate = new AbsoluteDate(dc, safeTC, timeScale); 863 if (timeScale.minuteDuration(safeDate) > 59 + secondsB) { 864 // we are within the last minute of the day, the number of seconds is OK 865 return safeDate.shiftedBy(secondsB); 866 } else { 867 // let TimeComponents trigger an OrekitIllegalArgumentException 868 // for the wrong number of seconds 869 tc = new TimeComponents(secondsA, secondsB); 870 } 871 } else { 872 tc = new TimeComponents(secondsInDay); 873 } 874 875 // create the date 876 return new AbsoluteDate(dc, tc, timeScale); 877 878 } 879 880 881 /** Build an instance corresponding to a Julian Epoch (JE). 882 * <p>According to Lieske paper: <a 883 * href="http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?1979A%26A....73..282L&defaultprint=YES&filetype=.pdf."> 884 * Precession Matrix Based on IAU (1976) System of Astronomical Constants</a>, Astronomy and Astrophysics, 885 * vol. 73, no. 3, Mar. 1979, p. 282-284, Julian Epoch is related to Julian Ephemeris Date as:</p> 886 * <pre> 887 * JE = 2000.0 + (JED - 2451545.0) / 365.25 888 * </pre> 889 * <p> 890 * This method reverts the formula above and computes an {@code AbsoluteDate} from the Julian Epoch. 891 * </p> 892 * 893 * <p>This method uses the {@link DataContext#getDefault() default data context}. 894 * 895 * @param julianEpoch Julian epoch, like 2000.0 for defining the classical reference J2000.0 896 * @return a new instant 897 * @see #J2000_EPOCH 898 * @see #createBesselianEpoch(double) 899 * @see TimeScales#createJulianEpoch(double) 900 */ 901 @DefaultDataContext 902 public static AbsoluteDate createJulianEpoch(final double julianEpoch) { 903 return DataContext.getDefault().getTimeScales().createJulianEpoch(julianEpoch); 904 } 905 906 /** Build an instance corresponding to a Besselian Epoch (BE). 907 * <p>According to Lieske paper: <a 908 * href="http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?1979A%26A....73..282L&defaultprint=YES&filetype=.pdf."> 909 * Precession Matrix Based on IAU (1976) System of Astronomical Constants</a>, Astronomy and Astrophysics, 910 * vol. 73, no. 3, Mar. 1979, p. 282-284, Besselian Epoch is related to Julian Ephemeris Date as:</p> 911 * <pre> 912 * BE = 1900.0 + (JED - 2415020.31352) / 365.242198781 913 * </pre> 914 * <p> 915 * This method reverts the formula above and computes an {@code AbsoluteDate} from the Besselian Epoch. 916 * </p> 917 * 918 * <p>This method uses the {@link DataContext#getDefault() default data context}. 919 * 920 * @param besselianEpoch Besselian epoch, like 1950 for defining the classical reference B1950.0 921 * @return a new instant 922 * @see #createJulianEpoch(double) 923 * @see TimeScales#createBesselianEpoch(double) 924 */ 925 @DefaultDataContext 926 public static AbsoluteDate createBesselianEpoch(final double besselianEpoch) { 927 return DataContext.getDefault().getTimeScales() 928 .createBesselianEpoch(besselianEpoch); 929 } 930 931 /** Get a time-shifted date. 932 * <p> 933 * Calling this method is equivalent to call <code>new AbsoluteDate(this, dt)</code>. 934 * </p> 935 * @param dt time shift in seconds 936 * @return a new date, shifted with respect to instance (which is immutable) 937 * @see org.orekit.utils.PVCoordinates#shiftedBy(double) 938 * @see org.orekit.attitudes.Attitude#shiftedBy(double) 939 * @see org.orekit.orbits.Orbit#shiftedBy(double) 940 * @see org.orekit.propagation.SpacecraftState#shiftedBy(double) 941 */ 942 public AbsoluteDate shiftedBy(final double dt) { 943 return new AbsoluteDate(this, dt); 944 } 945 946 /** Compute the physically elapsed duration between two instants. 947 * <p>The returned duration is the number of seconds physically 948 * elapsed between the two instants, measured in a regular time 949 * scale with respect to surface of the Earth (i.e either the {@link 950 * TAIScale TAI scale}, the {@link TTScale TT scale} or the {@link 951 * GPSScale GPS scale}). It is the only method that gives a 952 * duration with a physical meaning.</p> 953 * <p>This method gives the same result (with less computation) 954 * as calling {@link #offsetFrom(AbsoluteDate, TimeScale)} 955 * with a second argument set to one of the regular scales cited 956 * above.</p> 957 * <p>This method is the reverse of the {@link #AbsoluteDate(AbsoluteDate, 958 * double)} constructor.</p> 959 * @param instant instant to subtract from the instance 960 * @return offset in seconds between the two instants (positive 961 * if the instance is posterior to the argument) 962 * @see #offsetFrom(AbsoluteDate, TimeScale) 963 * @see #AbsoluteDate(AbsoluteDate, double) 964 */ 965 public double durationFrom(final AbsoluteDate instant) { 966 return (epoch - instant.epoch) + (offset - instant.offset); 967 } 968 969 /** Compute the apparent clock offset between two instant <em>in the 970 * perspective of a specific {@link TimeScale time scale}</em>. 971 * <p>The offset is the number of seconds counted in the given 972 * time scale between the locations of the two instants, with 973 * all time scale irregularities removed (i.e. considering all 974 * days are exactly 86400 seconds long). This method will give 975 * a result that may not have a physical meaning if the time scale 976 * is irregular. For example since a leap second was introduced at 977 * the end of 2005, the apparent offset between 2005-12-31T23:59:59 978 * and 2006-01-01T00:00:00 is 1 second, but the physical duration 979 * of the corresponding time interval as returned by the {@link 980 * #durationFrom(AbsoluteDate)} method is 2 seconds.</p> 981 * <p>This method is the reverse of the {@link #AbsoluteDate(AbsoluteDate, 982 * double, TimeScale)} constructor.</p> 983 * @param instant instant to subtract from the instance 984 * @param timeScale time scale with respect to which the offset should 985 * be computed 986 * @return apparent clock offset in seconds between the two instants 987 * (positive if the instance is posterior to the argument) 988 * @see #durationFrom(AbsoluteDate) 989 * @see #AbsoluteDate(AbsoluteDate, double, TimeScale) 990 */ 991 public double offsetFrom(final AbsoluteDate instant, final TimeScale timeScale) { 992 final long elapsedDurationA = epoch - instant.epoch; 993 final double elapsedDurationB = (offset + timeScale.offsetFromTAI(this)) - 994 (instant.offset + timeScale.offsetFromTAI(instant)); 995 return elapsedDurationA + elapsedDurationB; 996 } 997 998 /** Compute the offset between two time scales at the current instant. 999 * <p>The offset is defined as <i>l₁-l₂</i> 1000 * where <i>l₁</i> is the location of the instant in 1001 * the <code>scale1</code> time scale and <i>l₂</i> is the 1002 * location of the instant in the <code>scale2</code> time scale.</p> 1003 * @param scale1 first time scale 1004 * @param scale2 second time scale 1005 * @return offset in seconds between the two time scales at the 1006 * current instant 1007 */ 1008 public double timeScalesOffset(final TimeScale scale1, final TimeScale scale2) { 1009 return scale1.offsetFromTAI(this) - scale2.offsetFromTAI(this); 1010 } 1011 1012 /** Convert the instance to a Java {@link java.util.Date Date}. 1013 * <p>Conversion to the Date class induces a loss of precision because 1014 * the Date class does not provide sub-millisecond information. Java Dates 1015 * are considered to be locations in some times scales.</p> 1016 * @param timeScale time scale to use 1017 * @return a {@link java.util.Date Date} instance representing the location 1018 * of the instant in the time scale 1019 */ 1020 public Date toDate(final TimeScale timeScale) { 1021 final double time = epoch + (offset + timeScale.offsetFromTAI(this)); 1022 return new Date(FastMath.round((time + 10957.5 * 86400.0) * 1000)); 1023 } 1024 1025 /** Split the instance into date/time components. 1026 * @param timeScale time scale to use 1027 * @return date/time components 1028 */ 1029 public DateTimeComponents getComponents(final TimeScale timeScale) { 1030 1031 if (Double.isInfinite(offset)) { 1032 // special handling for past and future infinity 1033 if (offset < 0) { 1034 return new DateTimeComponents(DateComponents.MIN_EPOCH, TimeComponents.H00); 1035 } else { 1036 return new DateTimeComponents(DateComponents.MAX_EPOCH, 1037 new TimeComponents(23, 59, 59.999)); 1038 } 1039 } 1040 1041 // Compute offset from 2000-01-01T00:00:00 in specified time scale. 1042 // Use 2Sum for high precision. 1043 final double taiOffset = timeScale.offsetFromTAI(this); 1044 final SumAndResidual sumAndResidual = MathUtils.twoSum(offset, taiOffset); 1045 1046 // split date and time 1047 final long carry = (long) FastMath.floor(sumAndResidual.getSum()); 1048 double offset2000B = (sumAndResidual.getSum() - carry) + sumAndResidual.getResidual(); 1049 long offset2000A = epoch + carry + 43200l; 1050 if (offset2000B < 0) { 1051 offset2000A -= 1; 1052 offset2000B += 1; 1053 } 1054 long time = offset2000A % 86400l; 1055 if (time < 0l) { 1056 time += 86400l; 1057 } 1058 final int date = (int) ((offset2000A - time) / 86400l); 1059 1060 // extract calendar elements 1061 final DateComponents dateComponents = new DateComponents(DateComponents.J2000_EPOCH, date); 1062 1063 // extract time element, accounting for leap seconds 1064 final double leap = timeScale.insideLeap(this) ? timeScale.getLeap(this) : 0; 1065 final int minuteDuration = timeScale.minuteDuration(this); 1066 final TimeComponents timeComponents = 1067 TimeComponents.fromSeconds((int) time, offset2000B, leap, minuteDuration); 1068 1069 // build the components 1070 return new DateTimeComponents(dateComponents, timeComponents); 1071 1072 } 1073 1074 /** Split the instance into date/time components for a local time. 1075 * 1076 * <p>This method uses the {@link DataContext#getDefault() default data context}. 1077 * 1078 * @param minutesFromUTC offset in <em>minutes</em> from UTC (positive Eastwards UTC, 1079 * negative Westward UTC) 1080 * @return date/time components 1081 * @since 7.2 1082 * @see #getComponents(int, TimeScale) 1083 */ 1084 @DefaultDataContext 1085 public DateTimeComponents getComponents(final int minutesFromUTC) { 1086 return getComponents(minutesFromUTC, 1087 DataContext.getDefault().getTimeScales().getUTC()); 1088 } 1089 1090 /** 1091 * Split the instance into date/time components for a local time. 1092 * 1093 * @param minutesFromUTC offset in <em>minutes</em> from UTC (positive Eastwards UTC, 1094 * negative Westward UTC) 1095 * @param utc time scale used to compute date and time components. 1096 * @return date/time components 1097 * @since 10.1 1098 */ 1099 public DateTimeComponents getComponents(final int minutesFromUTC, 1100 final TimeScale utc) { 1101 1102 final DateTimeComponents utcComponents = getComponents(utc); 1103 1104 // shift the date according to UTC offset, but WITHOUT touching the seconds, 1105 // as they may exceed 60.0 during a leap seconds introduction, 1106 // and we want to preserve these special cases 1107 final double seconds = utcComponents.getTime().getSecond(); 1108 1109 int minute = utcComponents.getTime().getMinute() + minutesFromUTC; 1110 final int hourShift; 1111 if (minute < 0) { 1112 hourShift = (minute - 59) / 60; 1113 } else if (minute > 59) { 1114 hourShift = minute / 60; 1115 } else { 1116 hourShift = 0; 1117 } 1118 minute -= 60 * hourShift; 1119 1120 int hour = utcComponents.getTime().getHour() + hourShift; 1121 final int dayShift; 1122 if (hour < 0) { 1123 dayShift = (hour - 23) / 24; 1124 } else if (hour > 23) { 1125 dayShift = hour / 24; 1126 } else { 1127 dayShift = 0; 1128 } 1129 hour -= 24 * dayShift; 1130 1131 return new DateTimeComponents(new DateComponents(utcComponents.getDate(), dayShift), 1132 new TimeComponents(hour, minute, seconds, minutesFromUTC)); 1133 1134 } 1135 1136 /** Split the instance into date/time components for a time zone. 1137 * 1138 * <p>This method uses the {@link DataContext#getDefault() default data context}. 1139 * 1140 * @param timeZone time zone 1141 * @return date/time components 1142 * @since 7.2 1143 * @see #getComponents(TimeZone, TimeScale) 1144 */ 1145 @DefaultDataContext 1146 public DateTimeComponents getComponents(final TimeZone timeZone) { 1147 return getComponents(timeZone, DataContext.getDefault().getTimeScales().getUTC()); 1148 } 1149 1150 /** 1151 * Split the instance into date/time components for a time zone. 1152 * 1153 * @param timeZone time zone 1154 * @param utc time scale used to computed date and time components. 1155 * @return date/time components 1156 * @since 10.1 1157 */ 1158 public DateTimeComponents getComponents(final TimeZone timeZone, 1159 final TimeScale utc) { 1160 final AbsoluteDate javaEpoch = new AbsoluteDate(DateComponents.JAVA_EPOCH, utc); 1161 final long milliseconds = FastMath.round(1000 * offsetFrom(javaEpoch, utc)); 1162 return getComponents(timeZone.getOffset(milliseconds) / 60000, utc); 1163 } 1164 1165 /** Compare the instance with another date. 1166 * @param date other date to compare the instance to 1167 * @return a negative integer, zero, or a positive integer as this date 1168 * is before, simultaneous, or after the specified date. 1169 */ 1170 public int compareTo(final AbsoluteDate date) { 1171 final double duration = durationFrom(date); 1172 if (!Double.isNaN(duration)) { 1173 return Double.compare(duration, 0.0); 1174 } 1175 // both dates are infinity or one is NaN or both are NaN 1176 return Double.compare(offset, date.offset); 1177 } 1178 1179 /** {@inheritDoc} */ 1180 public AbsoluteDate getDate() { 1181 return this; 1182 } 1183 1184 /** Check if the instance represents the same time as another instance. 1185 * @param date other date 1186 * @return true if the instance and the other date refer to the same instant 1187 */ 1188 public boolean equals(final Object date) { 1189 1190 if (date == this) { 1191 // first fast check 1192 return true; 1193 } 1194 1195 if (date instanceof AbsoluteDate) { 1196 return durationFrom((AbsoluteDate) date) == 0; 1197 } 1198 1199 return false; 1200 1201 } 1202 1203 /** Check if the instance represents the same time as another. 1204 * @param other the instant to compare this date to 1205 * @return true if the instance and the argument refer to the same instant 1206 * @see #isCloseTo(TimeStamped, double) 1207 * @since 10.1 1208 */ 1209 public boolean isEqualTo(final TimeStamped other) { 1210 return this.equals(other.getDate()); 1211 } 1212 1213 /** Check if the instance time is close to another. 1214 * @param other the instant to compare this date to 1215 * @param tolerance the separation, in seconds, under which the two instants will be considered close to each other 1216 * @return true if the duration between the instance and the argument is strictly below the tolerance 1217 * @see #isEqualTo(TimeStamped) 1218 * @since 10.1 1219 */ 1220 public boolean isCloseTo(final TimeStamped other, final double tolerance) { 1221 return FastMath.abs(this.durationFrom(other.getDate())) < tolerance; 1222 } 1223 1224 /** Check if the instance represents a time that is strictly before another. 1225 * @param other the instant to compare this date to 1226 * @return true if the instance is strictly before the argument when ordering chronologically 1227 * @see #isBeforeOrEqualTo(TimeStamped) 1228 * @since 10.1 1229 */ 1230 public boolean isBefore(final TimeStamped other) { 1231 return this.compareTo(other.getDate()) < 0; 1232 } 1233 1234 /** Check if the instance represents a time that is strictly after another. 1235 * @param other the instant to compare this date to 1236 * @return true if the instance is strictly after the argument when ordering chronologically 1237 * @see #isAfterOrEqualTo(TimeStamped) 1238 * @since 10.1 1239 */ 1240 public boolean isAfter(final TimeStamped other) { 1241 return this.compareTo(other.getDate()) > 0; 1242 } 1243 1244 /** Check if the instance represents a time that is before or equal to another. 1245 * @param other the instant to compare this date to 1246 * @return true if the instance is before (or equal to) the argument when ordering chronologically 1247 * @see #isBefore(TimeStamped) 1248 * @since 10.1 1249 */ 1250 public boolean isBeforeOrEqualTo(final TimeStamped other) { 1251 return this.isEqualTo(other) || this.isBefore(other); 1252 } 1253 1254 /** Check if the instance represents a time that is after or equal to another. 1255 * @param other the instant to compare this date to 1256 * @return true if the instance is after (or equal to) the argument when ordering chronologically 1257 * @see #isAfterOrEqualTo(TimeStamped) 1258 * @since 10.1 1259 */ 1260 public boolean isAfterOrEqualTo(final TimeStamped other) { 1261 return this.isEqualTo(other) || this.isAfter(other); 1262 } 1263 1264 /** Check if the instance represents a time that is strictly between two others representing 1265 * the boundaries of a time span. The two boundaries can be provided in any order: in other words, 1266 * whether <code>boundary</code> represents a time that is before or after <code>otherBoundary</code> will 1267 * not change the result of this method. 1268 * @param boundary one end of the time span 1269 * @param otherBoundary the other end of the time span 1270 * @return true if the instance is strictly between the two arguments when ordering chronologically 1271 * @see #isBetweenOrEqualTo(TimeStamped, TimeStamped) 1272 * @since 10.1 1273 */ 1274 public boolean isBetween(final TimeStamped boundary, final TimeStamped otherBoundary) { 1275 final TimeStamped beginning; 1276 final TimeStamped end; 1277 if (boundary.getDate().isBefore(otherBoundary)) { 1278 beginning = boundary; 1279 end = otherBoundary; 1280 } else { 1281 beginning = otherBoundary; 1282 end = boundary; 1283 } 1284 return this.isAfter(beginning) && this.isBefore(end); 1285 } 1286 1287 /** Check if the instance represents a time that is between two others representing 1288 * the boundaries of a time span, or equal to one of them. The two boundaries can be provided in any order: 1289 * in other words, whether <code>boundary</code> represents a time that is before or after 1290 * <code>otherBoundary</code> will not change the result of this method. 1291 * @param boundary one end of the time span 1292 * @param otherBoundary the other end of the time span 1293 * @return true if the instance is between the two arguments (or equal to at least one of them) 1294 * when ordering chronologically 1295 * @see #isBetween(TimeStamped, TimeStamped) 1296 * @since 10.1 1297 */ 1298 public boolean isBetweenOrEqualTo(final TimeStamped boundary, final TimeStamped otherBoundary) { 1299 return this.isEqualTo(boundary) || this.isEqualTo(otherBoundary) || this.isBetween(boundary, otherBoundary); 1300 } 1301 1302 /** Get a hashcode for this date. 1303 * @return hashcode 1304 */ 1305 public int hashCode() { 1306 final long l = Double.doubleToLongBits(durationFrom(ARBITRARY_EPOCH)); 1307 return (int) (l ^ (l >>> 32)); 1308 } 1309 1310 /** 1311 * Get a String representation of the instant location with up to 16 digits of 1312 * precision for the seconds value. 1313 * 1314 * <p> Since this method is used in exception messages and error handling every 1315 * effort is made to return some representation of the instant. If UTC is available 1316 * from the default data context then it is used to format the string in UTC. If not 1317 * then TAI is used. Finally if the prior attempts fail this method falls back to 1318 * converting this class's internal representation to a string. 1319 * 1320 * <p>This method uses the {@link DataContext#getDefault() default data context}. 1321 * 1322 * @return a string representation of the instance, in ISO-8601 format if UTC is 1323 * available from the default data context. 1324 * @see #toString(TimeScale) 1325 * @see #toStringRfc3339(TimeScale) 1326 * @see DateTimeComponents#toString(int, int) 1327 */ 1328 @DefaultDataContext 1329 public String toString() { 1330 // CHECKSTYLE: stop IllegalCatch check 1331 try { 1332 // try to use UTC first at that is likely most familiar to the user. 1333 return toString(DataContext.getDefault().getTimeScales().getUTC()) + "Z"; 1334 } catch (RuntimeException e1) { 1335 // catch OrekitException, OrekitIllegalStateException, etc. 1336 try { 1337 // UTC failed, try to use TAI 1338 return toString(new TAIScale()) + " TAI"; 1339 } catch (RuntimeException e2) { 1340 // catch OrekitException, OrekitIllegalStateException, etc. 1341 // Likely failed to convert to ymdhms. 1342 // Give user some indication of what time it is. 1343 try { 1344 return "(" + this.epoch + " + " + this.offset + ") seconds past epoch"; 1345 } catch (RuntimeException e3) { 1346 // give up and throw an exception 1347 e2.addSuppressed(e3); 1348 e1.addSuppressed(e2); 1349 throw e1; 1350 } 1351 } 1352 } 1353 // CHECKSTYLE: resume IllegalCatch check 1354 } 1355 1356 /** 1357 * Get a String representation of the instant location in ISO-8601 format without the 1358 * UTC offset and with up to 16 digits of precision for the seconds value. 1359 * 1360 * @param timeScale time scale to use 1361 * @return a string representation of the instance. 1362 * @see #toStringRfc3339(TimeScale) 1363 * @see DateTimeComponents#toString(int, int) 1364 */ 1365 public String toString(final TimeScale timeScale) { 1366 return getComponents(timeScale).toStringWithoutUtcOffset(); 1367 } 1368 1369 /** Get a String representation of the instant location for a local time. 1370 * 1371 * <p>This method uses the {@link DataContext#getDefault() default data context}. 1372 * 1373 * @param minutesFromUTC offset in <em>minutes</em> from UTC (positive Eastwards UTC, 1374 * negative Westward UTC). 1375 * @return string representation of the instance, 1376 * in ISO-8601 format with milliseconds accuracy 1377 * @since 7.2 1378 * @see #toString(int, TimeScale) 1379 */ 1380 @DefaultDataContext 1381 public String toString(final int minutesFromUTC) { 1382 return toString(minutesFromUTC, 1383 DataContext.getDefault().getTimeScales().getUTC()); 1384 } 1385 1386 /** 1387 * Get a String representation of the instant location for a local time. 1388 * 1389 * @param minutesFromUTC offset in <em>minutes</em> from UTC (positive Eastwards UTC, 1390 * negative Westward UTC). 1391 * @param utc time scale used to compute date and time components. 1392 * @return string representation of the instance, in ISO-8601 format with milliseconds 1393 * accuracy 1394 * @since 10.1 1395 * @see #getComponents(int, TimeScale) 1396 * @see DateTimeComponents#toString(int, int) 1397 */ 1398 public String toString(final int minutesFromUTC, final TimeScale utc) { 1399 final int minuteDuration = utc.minuteDuration(this); 1400 return getComponents(minutesFromUTC, utc).toString(minuteDuration); 1401 } 1402 1403 /** Get a String representation of the instant location for a time zone. 1404 * 1405 * <p>This method uses the {@link DataContext#getDefault() default data context}. 1406 * 1407 * @param timeZone time zone 1408 * @return string representation of the instance, 1409 * in ISO-8601 format with milliseconds accuracy 1410 * @since 7.2 1411 * @see #toString(TimeZone, TimeScale) 1412 */ 1413 @DefaultDataContext 1414 public String toString(final TimeZone timeZone) { 1415 return toString(timeZone, DataContext.getDefault().getTimeScales().getUTC()); 1416 } 1417 1418 /** 1419 * Get a String representation of the instant location for a time zone. 1420 * 1421 * @param timeZone time zone 1422 * @param utc time scale used to compute date and time components. 1423 * @return string representation of the instance, in ISO-8601 format with milliseconds 1424 * accuracy 1425 * @since 10.1 1426 * @see #getComponents(TimeZone, TimeScale) 1427 * @see DateTimeComponents#toString(int, int) 1428 */ 1429 public String toString(final TimeZone timeZone, final TimeScale utc) { 1430 final int minuteDuration = utc.minuteDuration(this); 1431 return getComponents(timeZone, utc).toString(minuteDuration); 1432 } 1433 1434 /** 1435 * Represent the given date as a string according to the format in RFC 3339. RFC3339 1436 * is a restricted subset of ISO 8601 with a well defined grammar. Enough digits are 1437 * included in the seconds value to avoid rounding up to the next minute. 1438 * 1439 * <p>This method is different than {@link AbsoluteDate#toString(TimeScale)} in that 1440 * it includes a {@code "Z"} at the end to indicate the time zone and enough precision 1441 * to represent the point in time without rounding up to the next minute. 1442 * 1443 * <p>RFC3339 is unable to represent BC years, years of 10000 or more, time zone 1444 * offsets of 100 hours or more, or NaN. In these cases the value returned from this 1445 * method will not be valid RFC3339 format. 1446 * 1447 * @param utc time scale. 1448 * @return RFC 3339 format string. 1449 * @see <a href="https://tools.ietf.org/html/rfc3339#page-8">RFC 3339</a> 1450 * @see DateTimeComponents#toStringRfc3339() 1451 * @see #toString(TimeScale) 1452 * @see #getComponents(TimeScale) 1453 */ 1454 public String toStringRfc3339(final TimeScale utc) { 1455 return this.getComponents(utc).toStringRfc3339(); 1456 } 1457 1458 /** 1459 * Return a string representation of this date-time, rounded to the given precision. 1460 * 1461 * <p>The format used is ISO8601 without the UTC offset.</p> 1462 * 1463 * <p>Calling {@code toStringWithoutUtcOffset(DataContext.getDefault().getTimeScales().getUTC(), 1464 * 3)} will emulate the behavior of {@link #toString()} in Orekit 10 and earlier. Note 1465 * this method is more accurate as it correctly handles rounding during leap seconds. 1466 * 1467 * @param timeScale to use to compute components. 1468 * @param fractionDigits the number of digits to include after the decimal point in 1469 * the string representation of the seconds. The date and time 1470 * is first rounded as necessary. {@code fractionDigits} must be 1471 * greater than or equal to {@code 0}. 1472 * @return string representation of this date, time, and UTC offset 1473 * @see #toString(TimeScale) 1474 * @see #toStringRfc3339(TimeScale) 1475 * @see DateTimeComponents#toString(int, int) 1476 * @see DateTimeComponents#toStringWithoutUtcOffset(int, int) 1477 * @since 11.1 1478 */ 1479 public String toStringWithoutUtcOffset(final TimeScale timeScale, 1480 final int fractionDigits) { 1481 return this.getComponents(timeScale) 1482 .toStringWithoutUtcOffset(timeScale.minuteDuration(this), fractionDigits); 1483 } 1484 1485 }