1 /* Copyright 2002-2022 CS GROUP
2 * Licensed to CS GROUP (CS) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * CS licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17 package org.orekit.estimation.iod;
18
19 import org.hipparchus.geometry.euclidean.threed.Vector3D;
20 import org.hipparchus.util.FastMath;
21 import org.orekit.errors.OrekitException;
22 import org.orekit.errors.OrekitMessages;
23 import org.orekit.estimation.measurements.PV;
24 import org.orekit.estimation.measurements.Position;
25 import org.orekit.frames.Frame;
26 import org.orekit.orbits.KeplerianOrbit;
27 import org.orekit.time.AbsoluteDate;
28 import org.orekit.utils.PVCoordinates;
29
30 /**
31 * Gibbs initial orbit determination.
32 * An orbit is determined from three position vectors.
33 *
34 * Reference:
35 * Vallado, D., Fundamentals of Astrodynamics and Applications
36 *
37 * @author Joris Olympio
38 * @since 8.0
39 *
40 */
41 public class IodGibbs {
42
43 /** Threshold for checking coplanr vectors. */
44 private static final double COPLANAR_THRESHOLD = FastMath.toRadians(5.);
45
46 /** gravitationnal constant. */
47 private final double mu;
48
49 /** Creator.
50 *
51 * @param mu gravitational constant
52 */
53 public IodGibbs(final double mu) {
54 this.mu = mu;
55 }
56
57 /** Give an initial orbit estimation, assuming Keplerian motion.
58 * All observations should be from the same location.
59 *
60 * @param frame measurements frame
61 * @param p1 First position measurement
62 * @param p2 Second position measurement
63 * @param p3 Third position measurement
64 * @return an initial orbit estimation at the central date
65 * (i.e., date of the second position measurement)
66 * @since 11.0
67 */
68 public KeplerianOrbit estimate(final Frame frame, final Position p1, final Position p2, final Position p3) {
69 return estimate(frame,
70 p1.getPosition(), p1.getDate(),
71 p2.getPosition(), p2.getDate(),
72 p3.getPosition(), p3.getDate());
73 }
74
75 /** Give an initial orbit estimation, assuming Keplerian motion.
76 * All observations should be from the same location.
77 *
78 * @param frame measure frame
79 * @param pv1 PV measure 1 taken in frame
80 * @param pv2 PV measure 2 taken in frame
81 * @param pv3 PV measure 3 taken in frame
82 * @return an initial orbit estimation at the central date
83 * (i.e., date of the second PV measurement)
84 */
85 public KeplerianOrbit estimate(final Frame frame, final PV pv1, final PV pv2, final PV pv3) {
86 return estimate(frame,
87 pv1.getPosition(), pv1.getDate(),
88 pv2.getPosition(), pv2.getDate(),
89 pv3.getPosition(), pv3.getDate());
90 }
91
92 /** Give an initial orbit estimation, assuming Keplerian motion.
93 * All observations should be from the same location.
94 *
95 * @param frame measure frame
96 * @param r1 position 1 measured in frame
97 * @param date1 date of measure 1
98 * @param r2 position 2 measured in frame
99 * @param date2 date of measure 2
100 * @param r3 position 3 measured in frame
101 * @param date3 date of measure 3
102 * @return an initial orbit estimation at the central date
103 * (i.e., date of the second position measurement)
104 */
105 public KeplerianOrbit estimate(final Frame frame,
106 final Vector3D r1, final AbsoluteDate date1,
107 final Vector3D r2, final AbsoluteDate date2,
108 final Vector3D r3, final AbsoluteDate date3) {
109 // Checks measures are not at the same date
110 if (date1.equals(date2) || date1.equals(date3) || date2.equals(date3)) {
111 throw new OrekitException(OrekitMessages.NON_DIFFERENT_DATES_FOR_OBSERVATIONS, date1, date2, date3,
112 date2.durationFrom(date1), date3.durationFrom(date1), date3.durationFrom(date2));
113 }
114
115 // Checks measures are in the same plane
116 final double num = r1.normalize().dotProduct(r2.normalize().crossProduct(r3.normalize()));
117 final double alpha = FastMath.PI / 2.0 - FastMath.acos(num);
118 if (FastMath.abs(alpha) > COPLANAR_THRESHOLD) {
119 throw new OrekitException(OrekitMessages.NON_COPLANAR_POINTS);
120 }
121
122 final Vector3D D = r1.crossProduct(r2).add(r2.crossProduct(r3).add(r3.crossProduct(r1)));
123
124 final Vector3D N = (r2.crossProduct(r3)).scalarMultiply(r1.getNorm())
125 .add((r3.crossProduct(r1)).scalarMultiply(r2.getNorm()))
126 .add((r1.crossProduct(r2)).scalarMultiply(r3.getNorm()));
127
128 final Vector3D B = D.crossProduct(r2);
129
130 final Vector3D S = r1.scalarMultiply(r2.getNorm() - r3.getNorm())
131 .add(r2.scalarMultiply(r3.getNorm() - r1.getNorm())
132 .add(r3.scalarMultiply(r1.getNorm() - r2.getNorm())));
133
134 // middle velocity
135 final double vm = FastMath.sqrt(mu / (N.getNorm() * D.getNorm()));
136 final Vector3D vlEci = B.scalarMultiply(vm / r2.getNorm()).add(S.scalarMultiply(vm));
137
138 // compile a new middle point with position, velocity
139 final PVCoordinates pv = new PVCoordinates(r2, vlEci);
140 final AbsoluteDate date = date2;
141
142 // compute the equivalent Keplerian orbit
143 final KeplerianOrbit orbit = new KeplerianOrbit(pv, frame, date, mu);
144
145 //define the reverse orbit
146 final PVCoordinates pv2 = new PVCoordinates(r2, vlEci.scalarMultiply(-1));
147 final KeplerianOrbit orbit2 = new KeplerianOrbit(pv2, frame, date, mu);
148
149 //check which orbit is correct
150 final Vector3D estP3 = orbit.shiftedBy(date3.durationFrom(date2)).
151 getPVCoordinates().getPosition();
152 final double dist = estP3.subtract(r3).getNorm();
153 final Vector3D estP3_2 = orbit2.shiftedBy(date3.durationFrom(date2)).
154 getPVCoordinates().getPosition();
155 final double dist2 = estP3_2.subtract(r3).getNorm();
156
157 if (dist <= dist2) {
158 return orbit;
159 } else {
160 return orbit2;
161 }
162 }
163 }