1 /* Copyright 2002-2022 CS GROUP
2 * Licensed to CS GROUP (CS) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * CS licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17 package org.orekit.estimation.sequential;
18
19 import java.util.List;
20
21 import org.orekit.propagation.MatricesHarvester;
22 import org.orekit.propagation.PropagationType;
23 import org.orekit.propagation.Propagator;
24 import org.orekit.propagation.conversion.OrbitDeterminationPropagatorBuilder;
25 import org.orekit.propagation.numerical.JacobiansMapper;
26 import org.orekit.utils.ParameterDriversList;
27
28 /** Class defining the process model dynamics to use with a {@link KalmanEstimator}.
29 * @author Romain Gerbaud
30 * @author Maxime Journot
31 * @since 9.2
32 */
33 public class KalmanModel extends AbstractKalmanModel {
34
35 /** Kalman process model constructor.
36 * @param propagatorBuilders propagators builders used to evaluate the orbits.
37 * @param covarianceMatricesProviders providers for covariance matrices
38 * @param estimatedMeasurementParameters measurement parameters to estimate
39 * @param measurementProcessNoiseMatrix provider for measurement process noise matrix
40 */
41 public KalmanModel(final List<OrbitDeterminationPropagatorBuilder> propagatorBuilders,
42 final List<CovarianceMatrixProvider> covarianceMatricesProviders,
43 final ParameterDriversList estimatedMeasurementParameters,
44 final CovarianceMatrixProvider measurementProcessNoiseMatrix) {
45 // call super constructor
46 super(propagatorBuilders, covarianceMatricesProviders, estimatedMeasurementParameters,
47 measurementProcessNoiseMatrix, new JacobiansMapper[propagatorBuilders.size()]);
48 }
49
50 /** {@inheritDoc} */
51 @Override
52 protected void updateReferenceTrajectories(final Propagator[] propagators,
53 final PropagationType pType,
54 final PropagationType sType) {
55
56 // Update the reference trajectory propagator
57 setReferenceTrajectories(propagators);
58
59 // Jacobian harvesters
60 final MatricesHarvester[] harvesters = new MatricesHarvester[propagators.length];
61
62 for (int k = 0; k < propagators.length; ++k) {
63 // Link the partial derivatives to this new propagator
64 final String equationName = KalmanEstimator.class.getName() + "-derivatives-" + k;
65 harvesters[k] = getReferenceTrajectories()[k].setupMatricesComputation(equationName, null, null);
66 }
67
68 // Update Jacobian harvesters
69 setHarvesters(harvesters);
70
71 }
72
73 }