1   /* Copyright 2002-2022 CS GROUP
2    * Licensed to CS GROUP (CS) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * CS licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *   http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  package org.orekit.propagation.numerical;
18  
19  import java.util.ArrayList;
20  import java.util.Arrays;
21  import java.util.Collections;
22  import java.util.List;
23  
24  import org.hipparchus.CalculusFieldElement;
25  import org.hipparchus.Field;
26  import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
27  import org.hipparchus.ode.FieldODEIntegrator;
28  import org.hipparchus.util.MathArrays;
29  import org.orekit.annotation.DefaultDataContext;
30  import org.orekit.attitudes.AttitudeProvider;
31  import org.orekit.attitudes.FieldAttitude;
32  import org.orekit.data.DataContext;
33  import org.orekit.errors.OrekitException;
34  import org.orekit.errors.OrekitIllegalArgumentException;
35  import org.orekit.errors.OrekitInternalError;
36  import org.orekit.errors.OrekitMessages;
37  import org.orekit.forces.ForceModel;
38  import org.orekit.forces.gravity.NewtonianAttraction;
39  import org.orekit.frames.Frame;
40  import org.orekit.orbits.FieldOrbit;
41  import org.orekit.orbits.OrbitType;
42  import org.orekit.orbits.PositionAngle;
43  import org.orekit.propagation.FieldSpacecraftState;
44  import org.orekit.propagation.PropagationType;
45  import org.orekit.propagation.Propagator;
46  import org.orekit.propagation.events.FieldEventDetector;
47  import org.orekit.propagation.integration.FieldAbstractIntegratedPropagator;
48  import org.orekit.propagation.integration.FieldStateMapper;
49  import org.orekit.time.FieldAbsoluteDate;
50  import org.orekit.utils.FieldAbsolutePVCoordinates;
51  import org.orekit.utils.FieldPVCoordinates;
52  import org.orekit.utils.ParameterDriver;
53  import org.orekit.utils.ParameterObserver;
54  import org.orekit.utils.TimeStampedFieldPVCoordinates;
55  
56  /** This class propagates {@link org.orekit.orbits.FieldOrbit orbits} using
57   * numerical integration.
58   * <p>Numerical propagation is much more accurate than analytical propagation
59   * like for example {@link org.orekit.propagation.analytical.KeplerianPropagator
60   * Keplerian} or {@link org.orekit.propagation.analytical.EcksteinHechlerPropagator
61   * Eckstein-Hechler}, but requires a few more steps to set up to be used properly.
62   * Whereas analytical propagators are configured only thanks to their various
63   * constructors and can be used immediately after construction, numerical propagators
64   * configuration involve setting several parameters between construction time
65   * and propagation time.</p>
66   * <p>The configuration parameters that can be set are:</p>
67   * <ul>
68   *   <li>the initial spacecraft state ({@link #setInitialState(FieldSpacecraftState)})</li>
69   *   <li>the central attraction coefficient ({@link #setMu(CalculusFieldElement)})</li>
70   *   <li>the various force models ({@link #addForceModel(ForceModel)},
71   *   {@link #removeForceModels()})</li>
72   *   <li>the {@link OrbitType type} of orbital parameters to be used for propagation
73   *   ({@link #setOrbitType(OrbitType)}),
74   *   <li>the {@link PositionAngle type} of position angle to be used in orbital parameters
75   *   to be used for propagation where it is relevant ({@link
76   *   #setPositionAngleType(PositionAngle)}),
77   *   <li>whether {@link org.orekit.propagation.integration.FieldAdditionalEquations additional equations}
78   *   should be propagated along with orbital state
79   *   ({@link #addAdditionalEquations(org.orekit.propagation.integration.FieldAdditionalEquations)}),
80   *   <li>the discrete events that should be triggered during propagation
81   *   ({@link #addEventDetector(FieldEventDetector)},
82   *   {@link #clearEventsDetectors()})</li>
83   *   <li>the binding logic with the rest of the application ({@link #getMultiplexer()})</li>
84   * </ul>
85   * <p>From these configuration parameters, only the initial state is mandatory. The default
86   * propagation settings are in {@link OrbitType#EQUINOCTIAL equinoctial} parameters with
87   * {@link PositionAngle#TRUE true} longitude argument. If the central attraction coefficient
88   * is not explicitly specified, the one used to define the initial orbit will be used.
89   * However, specifying only the initial state and perhaps the central attraction coefficient
90   * would mean the propagator would use only Keplerian forces. In this case, the simpler {@link
91   * org.orekit.propagation.analytical.KeplerianPropagator KeplerianPropagator} class would
92   * perhaps be more effective.</p>
93   * <p>The underlying numerical integrator set up in the constructor may also have its own
94   * configuration parameters. Typical configuration parameters for adaptive stepsize integrators
95   * are the min, max and perhaps start step size as well as the absolute and/or relative errors
96   * thresholds.</p>
97   * <p>The state that is seen by the integrator is a simple seven elements double array.
98   * The six first elements are either:
99   * <ul>
100  *   <li>the {@link org.orekit.orbits.FieldEquinoctialOrbit equinoctial orbit parameters} (a, e<sub>x</sub>,
101  *   e<sub>y</sub>, h<sub>x</sub>, h<sub>y</sub>, λ<sub>M</sub> or λ<sub>E</sub>
102  *   or λ<sub>v</sub>) in meters and radians,</li>
103  *   <li>the {@link org.orekit.orbits.FieldKeplerianOrbit Keplerian orbit parameters} (a, e, i, ω, Ω,
104  *   M or E or v) in meters and radians,</li>
105  *   <li>the {@link org.orekit.orbits.FieldCircularOrbit circular orbit parameters} (a, e<sub>x</sub>, e<sub>y</sub>, i,
106  *   Ω, α<sub>M</sub> or α<sub>E</sub> or α<sub>v</sub>) in meters
107  *   and radians,</li>
108  *   <li>the {@link org.orekit.orbits.FieldCartesianOrbit Cartesian orbit parameters} (x, y, z, v<sub>x</sub>,
109  *   v<sub>y</sub>, v<sub>z</sub>) in meters and meters per seconds.
110  * </ul>
111  * The last element is the mass in kilograms.
112  * <p>The following code snippet shows a typical setting for Low Earth Orbit propagation in
113  * equinoctial parameters and true longitude argument:</p>
114  * <pre>
115  * final T          zero      = field.getZero();
116  * final T          dP        = zero.add(0.001);
117  * final T          minStep   = zero.add(0.001);
118  * final T          maxStep   = zero.add(500);
119  * final T          initStep  = zero.add(60);
120  * final double[][] tolerance = FieldNumericalPropagator.tolerances(dP, orbit, OrbitType.EQUINOCTIAL);
121  * AdaptiveStepsizeFieldIntegrator&lt;T&gt; integrator = new DormandPrince853FieldIntegrator&lt;&gt;(field, minStep, maxStep, tolerance[0], tolerance[1]);
122  * integrator.setInitialStepSize(initStep);
123  * propagator = new FieldNumericalPropagator&lt;&gt;(field, integrator);
124  * </pre>
125  * <p>By default, at the end of the propagation, the propagator resets the initial state to the final state,
126  * thus allowing a new propagation to be started from there without recomputing the part already performed.
127  * This behaviour can be chenged by calling {@link #setResetAtEnd(boolean)}.
128  * </p>
129  * <p>Beware the same instance cannot be used simultaneously by different threads, the class is <em>not</em>
130  * thread-safe.</p>
131 
132  * @see FieldSpacecraftState
133  * @see ForceModel
134  * @see org.orekit.propagation.sampling.FieldOrekitStepHandler
135  * @see org.orekit.propagation.sampling.FieldOrekitFixedStepHandler
136  * @see org.orekit.propagation.integration.FieldIntegratedEphemeris
137  * @see FieldTimeDerivativesEquations
138  *
139  * @author Mathieu Rom&eacute;ro
140  * @author Luc Maisonobe
141  * @author Guylaine Prat
142  * @author Fabien Maussion
143  * @author V&eacute;ronique Pommier-Maurussane
144  */
145 public class FieldNumericalPropagator<T extends CalculusFieldElement<T>> extends FieldAbstractIntegratedPropagator<T> {
146 
147     /** Force models used during the extrapolation of the FieldOrbit<T>, without Jacobians. */
148     private final List<ForceModel> forceModels;
149 
150     /** Field used by this class.*/
151     private final Field<T> field;
152 
153     /** boolean to ignore or not the creation of a NewtonianAttraction. */
154     private boolean ignoreCentralAttraction = false;
155 
156     /** Create a new instance of NumericalPropagator, based on orbit definition mu.
157      * After creation, the instance is empty, i.e. the attitude provider is set to an
158      * unspecified default law and there are no perturbing forces at all.
159      * This means that if {@link #addForceModel addForceModel} is not
160      * called after creation, the integrated orbit will follow a Keplerian
161      * evolution only. The defaults are {@link OrbitType#EQUINOCTIAL}
162      * for {@link #setOrbitType(OrbitType) propagation
163      * orbit type} and {@link PositionAngle#TRUE} for {@link
164      * #setPositionAngleType(PositionAngle) position angle type}.
165      *
166      * <p>This constructor uses the {@link DataContext#getDefault() default data context}.
167      *
168      * @param integrator numerical integrator to use for propagation.
169      * @param field Field used by default
170      * @see #FieldNumericalPropagator(Field, FieldODEIntegrator, AttitudeProvider)
171      */
172     @DefaultDataContext
173     public FieldNumericalPropagator(final Field<T> field, final FieldODEIntegrator<T> integrator) {
174         this(field, integrator, Propagator.getDefaultLaw(DataContext.getDefault().getFrames()));
175     }
176 
177     /** Create a new instance of NumericalPropagator, based on orbit definition mu.
178      * After creation, the instance is empty, i.e. the attitude provider is set to an
179      * unspecified default law and there are no perturbing forces at all.
180      * This means that if {@link #addForceModel addForceModel} is not
181      * called after creation, the integrated orbit will follow a Keplerian
182      * evolution only. The defaults are {@link OrbitType#EQUINOCTIAL}
183      * for {@link #setOrbitType(OrbitType) propagation
184      * orbit type} and {@link PositionAngle#TRUE} for {@link
185      * #setPositionAngleType(PositionAngle) position angle type}.
186      * @param field Field used by default
187      * @param integrator numerical integrator to use for propagation.
188      * @param attitudeProvider attitude law to use.
189      * @since 10.1
190      */
191     public FieldNumericalPropagator(final Field<T> field,
192                                     final FieldODEIntegrator<T> integrator,
193                                     final AttitudeProvider attitudeProvider) {
194         super(field, integrator, PropagationType.MEAN);
195         this.field = field;
196         forceModels = new ArrayList<ForceModel>();
197         initMapper(field);
198         setAttitudeProvider(attitudeProvider);
199         setMu(field.getZero().add(Double.NaN));
200         clearStepHandlers();
201         setOrbitType(OrbitType.EQUINOCTIAL);
202         setPositionAngleType(PositionAngle.TRUE);
203     }
204 
205     /** Set the flag to ignore or not the creation of a {@link NewtonianAttraction}.
206      * @param ignoreCentralAttraction if true, {@link NewtonianAttraction} is <em>not</em>
207      * added automatically if missing
208      */
209     public void setIgnoreCentralAttraction(final boolean ignoreCentralAttraction) {
210         this.ignoreCentralAttraction = ignoreCentralAttraction;
211     }
212 
213      /** Set the central attraction coefficient μ.
214       * <p>
215       * Setting the central attraction coefficient is
216       * equivalent to {@link #addForceModel(ForceModel) add}
217       * a {@link NewtonianAttraction} force model.
218       * </p>
219      * @param mu central attraction coefficient (m³/s²)
220      * @see #addForceModel(ForceModel)
221      * @see #getAllForceModels()
222      */
223     public void setMu(final T mu) {
224         if (ignoreCentralAttraction) {
225             superSetMu(mu);
226         } else {
227             addForceModel(new NewtonianAttraction(mu.getReal()));
228         }
229     }
230 
231     /** Set the central attraction coefficient μ only in upper class.
232      * @param mu central attraction coefficient (m³/s²)
233      */
234     private void superSetMu(final T mu) {
235         super.setMu(mu);
236     }
237 
238     /** Check if Newtonian attraction force model is available.
239      * <p>
240      * Newtonian attraction is always the last force model in the list.
241      * </p>
242      * @return true if Newtonian attraction force model is available
243      */
244     private boolean hasNewtonianAttraction() {
245         final int last = forceModels.size() - 1;
246         return last >= 0 && forceModels.get(last) instanceof NewtonianAttraction;
247     }
248 
249     /** Add a force model to the global perturbation model.
250      * <p>If this method is not called at all, the integrated orbit will follow
251      * a Keplerian evolution only.</p>
252      * @param model perturbing {@link ForceModel} to add
253      * @see #removeForceModels()
254      * @see #setMu(CalculusFieldElement)
255      */
256     public void addForceModel(final ForceModel model) {
257 
258         if (model instanceof NewtonianAttraction) {
259             // we want to add the central attraction force model
260 
261             try {
262                 // ensure we are notified of any mu change
263                 model.getParametersDrivers().get(0).addObserver(new ParameterObserver() {
264                     /** {@inheritDoc} */
265                     @Override
266                     public void valueChanged(final double previousValue, final ParameterDriver driver) {
267                         superSetMu(field.getZero().add(driver.getValue()));
268                     }
269                 });
270             } catch (OrekitException oe) {
271                 // this should never happen
272                 throw new OrekitInternalError(oe);
273             }
274 
275             if (hasNewtonianAttraction()) {
276                 // there is already a central attraction model, replace it
277                 forceModels.set(forceModels.size() - 1, model);
278             } else {
279                 // there are no central attraction model yet, add it at the end of the list
280                 forceModels.add(model);
281             }
282         } else {
283             // we want to add a perturbing force model
284             if (hasNewtonianAttraction()) {
285                 // insert the new force model before Newtonian attraction,
286                 // which should always be the last one in the list
287                 forceModels.add(forceModels.size() - 1, model);
288             } else {
289                 // we only have perturbing force models up to now, just append at the end of the list
290                 forceModels.add(model);
291             }
292         }
293 
294     }
295 
296     /** Remove all perturbing force models from the global perturbation model.
297      * <p>Once all perturbing forces have been removed (and as long as no new force
298      * model is added), the integrated orbit will follow a Keplerian evolution
299      * only.</p>
300      * @see #addForceModel(ForceModel)
301      */
302     public void removeForceModels() {
303         forceModels.clear();
304     }
305 
306     /** Get all the force models, perturbing forces and Newtonian attraction included.
307      * @return list of perturbing force models, with Newtonian attraction being the
308      * last one
309      * @see #addForceModel(ForceModel)
310      * @see #setMu(CalculusFieldElement)
311      * @since 9.1
312      */
313     public List<ForceModel> getAllForceModels() {
314         return Collections.unmodifiableList(forceModels);
315     }
316 
317     /** Set propagation orbit type.
318      * @param orbitType orbit type to use for propagation
319      */
320     public void setOrbitType(final OrbitType orbitType) {
321         super.setOrbitType(orbitType);
322     }
323 
324     /** Get propagation parameter type.
325      * @return orbit type used for propagation
326      */
327     public OrbitType getOrbitType() {
328         return superGetOrbitType();
329     }
330 
331     /** Get propagation parameter type.
332      * @return orbit type used for propagation
333      */
334     private OrbitType superGetOrbitType() {
335         return super.getOrbitType();
336     }
337 
338     /** Set position angle type.
339      * <p>
340      * The position parameter type is meaningful only if {@link
341      * #getOrbitType() propagation orbit type}
342      * support it. As an example, it is not meaningful for propagation
343      * in {@link OrbitType#CARTESIAN Cartesian} parameters.
344      * </p>
345      * @param positionAngleType angle type to use for propagation
346      */
347     public void setPositionAngleType(final PositionAngle positionAngleType) {
348         super.setPositionAngleType(positionAngleType);
349     }
350 
351     /** Get propagation parameter type.
352      * @return angle type to use for propagation
353      */
354     public PositionAngle getPositionAngleType() {
355         return super.getPositionAngleType();
356     }
357 
358     /** Set the initial state.
359      * @param initialState initial state
360      */
361     public void setInitialState(final FieldSpacecraftState<T> initialState) {
362         resetInitialState(initialState);
363     }
364 
365     /** {@inheritDoc} */
366     public void resetInitialState(final FieldSpacecraftState<T> state) {
367         super.resetInitialState(state);
368         if (!hasNewtonianAttraction()) {
369             setMu(state.getMu());
370         }
371         setStartDate(state.getDate());
372     }
373 
374     /** {@inheritDoc} */
375     public TimeStampedFieldPVCoordinates<T> getPVCoordinates(final FieldAbsoluteDate<T> date, final Frame frame) {
376         return propagate(date).getPVCoordinates(frame);
377     }
378 
379     /** {@inheritDoc} */
380     protected FieldStateMapper<T> createMapper(final FieldAbsoluteDate<T> referenceDate, final T mu,
381                                        final OrbitType orbitType, final PositionAngle positionAngleType,
382                                        final AttitudeProvider attitudeProvider, final Frame frame) {
383         return new FieldOsculatingMapper(referenceDate, mu, orbitType, positionAngleType, attitudeProvider, frame);
384     }
385 
386     /** Internal mapper using directly osculating parameters. */
387     private class FieldOsculatingMapper extends FieldStateMapper<T> {
388 
389         /** Simple constructor.
390          * <p>
391          * The position parameter type is meaningful only if {@link
392          * #getOrbitType() propagation orbit type}
393          * support it. As an example, it is not meaningful for propagation
394          * in {@link OrbitType#CARTESIAN Cartesian} parameters.
395          * </p>
396          * @param referenceDate reference date
397          * @param mu central attraction coefficient (m³/s²)
398          * @param orbitType orbit type to use for mapping
399          * @param positionAngleType angle type to use for propagation
400          * @param attitudeProvider attitude provider
401          * @param frame inertial frame
402          */
403         FieldOsculatingMapper(final FieldAbsoluteDate<T> referenceDate, final T mu,
404                               final OrbitType orbitType, final PositionAngle positionAngleType,
405                               final AttitudeProvider attitudeProvider, final Frame frame) {
406             super(referenceDate, mu, orbitType, positionAngleType, attitudeProvider, frame);
407         }
408 
409         /** {@inheritDoc} */
410         public FieldSpacecraftState<T> mapArrayToState(final FieldAbsoluteDate<T> date, final T[] y, final T[] yDot,
411                                                        final PropagationType type) {
412             // the parameter type is ignored for the Numerical Propagator
413 
414             final T mass = y[6];
415             if (mass.getReal() <= 0.0) {
416                 throw new OrekitException(OrekitMessages.SPACECRAFT_MASS_BECOMES_NEGATIVE, mass);
417             }
418 
419             if (superGetOrbitType() == null) {
420                 // propagation uses absolute position-velocity-acceleration
421                 final FieldVector3D<T> p = new FieldVector3D<>(y[0],    y[1],    y[2]);
422                 final FieldVector3D<T> v = new FieldVector3D<>(y[3],    y[4],    y[5]);
423                 final FieldVector3D<T> a;
424                 final FieldAbsolutePVCoordinates<T> absPva;
425                 if (yDot == null) {
426                     absPva = new FieldAbsolutePVCoordinates<>(getFrame(), new TimeStampedFieldPVCoordinates<>(date, p, v, FieldVector3D.getZero(date.getField())));
427                 } else {
428                     a = new FieldVector3D<>(yDot[3], yDot[4], yDot[5]);
429                     absPva = new FieldAbsolutePVCoordinates<>(getFrame(), new TimeStampedFieldPVCoordinates<>(date, p, v, a));
430                 }
431 
432                 final FieldAttitude<T> attitude = getAttitudeProvider().getAttitude(absPva, date, getFrame());
433                 return new FieldSpacecraftState<>(absPva, attitude, mass);
434             } else {
435                 // propagation uses regular orbits
436                 final FieldOrbit<T> orbit       = superGetOrbitType().mapArrayToOrbit(y, yDot, super.getPositionAngleType(), date, getMu(), getFrame());
437                 final FieldAttitude<T> attitude = getAttitudeProvider().getAttitude(orbit, date, getFrame());
438                 return new FieldSpacecraftState<>(orbit, attitude, mass);
439             }
440         }
441 
442         /** {@inheritDoc} */
443         public void mapStateToArray(final FieldSpacecraftState<T> state, final T[] y, final T[] yDot) {
444             if (superGetOrbitType() == null) {
445                 // propagation uses absolute position-velocity-acceleration
446                 final FieldVector3D<T> p = state.getAbsPVA().getPosition();
447                 final FieldVector3D<T> v = state.getAbsPVA().getVelocity();
448                 y[0] = p.getX();
449                 y[1] = p.getY();
450                 y[2] = p.getZ();
451                 y[3] = v.getX();
452                 y[4] = v.getY();
453                 y[5] = v.getZ();
454                 y[6] = state.getMass();
455             }
456             else {
457                 superGetOrbitType().mapOrbitToArray(state.getOrbit(), super.getPositionAngleType(), y, yDot);
458                 y[6] = state.getMass();
459             }
460         }
461 
462     }
463 
464     /** {@inheritDoc} */
465     protected MainStateEquations<T> getMainStateEquations(final FieldODEIntegrator<T> integrator) {
466         return new Main(integrator);
467     }
468 
469     /** Internal class for osculating parameters integration. */
470     private class Main implements MainStateEquations<T>, FieldTimeDerivativesEquations<T> {
471 
472         /** Derivatives array. */
473         private final T[] yDot;
474 
475         /** Current state. */
476         private FieldSpacecraftState<T> currentState;
477 
478         /** Jacobian of the orbital parameters with respect to the Cartesian parameters. */
479         private T[][] jacobian;
480 
481         /** Simple constructor.
482          * @param integrator numerical integrator to use for propagation.
483          */
484         Main(final FieldODEIntegrator<T> integrator) {
485 
486             this.yDot     = MathArrays.buildArray(getField(),  7);
487             this.jacobian = MathArrays.buildArray(getField(),  6, 6);
488             for (final ForceModel forceModel : forceModels) {
489                 forceModel.getFieldEventsDetectors(getField()).forEach(detector -> setUpEventDetector(integrator, detector));
490             }
491 
492             if (superGetOrbitType() == null) {
493                 // propagation uses absolute position-velocity-acceleration
494                 // we can set Jacobian once and for all
495                 for (int i = 0; i < jacobian.length; ++i) {
496                     Arrays.fill(jacobian[i], getField().getZero());
497                     jacobian[i][i] = getField().getOne();
498                 }
499             }
500 
501         }
502 
503         /** {@inheritDoc} */
504         @Override
505         public void init(final FieldSpacecraftState<T> initialState, final FieldAbsoluteDate<T> target) {
506             forceModels.forEach(fm -> fm.init(initialState, target));
507         }
508 
509         /** {@inheritDoc} */
510         @Override
511         public T[] computeDerivatives(final FieldSpacecraftState<T> state) {
512             final T zero = state.getA().getField().getZero();
513             currentState = state;
514             Arrays.fill(yDot, zero);
515             if (superGetOrbitType() != null) {
516                 // propagation uses regular orbits
517                 currentState.getOrbit().getJacobianWrtCartesian(getPositionAngleType(), jacobian);
518             }
519 
520             // compute the contributions of all perturbing forces,
521             // using the Kepler contribution at the end since
522             // NewtonianAttraction is always the last instance in the list
523             for (final ForceModel forceModel : forceModels) {
524                 forceModel.addContribution(state, this);
525             }
526 
527             if (superGetOrbitType() == null) {
528                 // position derivative is velocity, and was not added above in the force models
529                 // (it is added when orbit type is non-null because NewtonianAttraction considers it)
530                 final FieldVector3D<T> velocity = currentState.getPVCoordinates().getVelocity();
531                 yDot[0] = yDot[0].add(velocity.getX());
532                 yDot[1] = yDot[1].add(velocity.getY());
533                 yDot[2] = yDot[2].add(velocity.getZ());
534             }
535 
536             return yDot.clone();
537 
538         }
539 
540         /** {@inheritDoc} */
541         @Override
542         public void addKeplerContribution(final T mu) {
543             if (superGetOrbitType() == null) {
544 
545                 // if mu is neither 0 nor NaN, we want to include Newtonian acceleration
546                 if (mu.getReal() > 0) {
547                     // velocity derivative is Newtonian acceleration
548                     final FieldVector3D<T> position = currentState.getPVCoordinates().getPosition();
549                     final T r2         = position.getNormSq();
550                     final T coeff      = r2.multiply(r2.sqrt()).reciprocal().negate().multiply(mu);
551                     yDot[3] = yDot[3].add(coeff.multiply(position.getX()));
552                     yDot[4] = yDot[4].add(coeff.multiply(position.getY()));
553                     yDot[5] = yDot[5].add(coeff.multiply(position.getZ()));
554                 }
555 
556             } else {
557                 // propagation uses regular orbits
558                 currentState.getOrbit().addKeplerContribution(getPositionAngleType(), mu, yDot);
559             }
560         }
561 
562         /** {@inheritDoc} */
563         @Override
564         public void addNonKeplerianAcceleration(final FieldVector3D<T> gamma) {
565             for (int i = 0; i < 6; ++i) {
566                 final T[] jRow = jacobian[i];
567                 yDot[i] = yDot[i].add(jRow[3].linearCombination(jRow[3], gamma.getX(),
568                                                                 jRow[4], gamma.getY(),
569                                                                 jRow[5], gamma.getZ()));
570             }
571         }
572 
573         /** {@inheritDoc} */
574         @Override
575         public void addMassDerivative(final T q) {
576             if (q.getReal() > 0) {
577                 throw new OrekitIllegalArgumentException(OrekitMessages.POSITIVE_FLOW_RATE, q);
578             }
579             yDot[6] = yDot[6].add(q);
580         }
581 
582     }
583 
584     /** Estimate tolerance vectors for integrators.
585      * <p>
586      * The errors are estimated from partial derivatives properties of orbits,
587      * starting from a scalar position error specified by the user.
588      * Considering the energy conservation equation V = sqrt(mu (2/r - 1/a)),
589      * we get at constant energy (i.e. on a Keplerian trajectory):
590      * <pre>
591      * V r² |dV| = mu |dr|
592      * </pre>
593      * So we deduce a scalar velocity error consistent with the position error.
594      * From here, we apply orbits Jacobians matrices to get consistent errors
595      * on orbital parameters.
596      * <p>
597      * The tolerances are only <em>orders of magnitude</em>, and integrator tolerances
598      * are only local estimates, not global ones. So some care must be taken when using
599      * these tolerances. Setting 1mm as a position error does NOT mean the tolerances
600      * will guarantee a 1mm error position after several orbits integration.
601      * </p>
602      * @param dP user specified position error
603      * @param orbit reference orbit
604      * @param type propagation type for the meaning of the tolerance vectors elements
605      * (it may be different from {@code orbit.getType()})
606      * @return a two rows array, row 0 being the absolute tolerance error and row 1
607      * being the relative tolerance error
608      * @param <T> elements type
609      */
610     public static <T extends CalculusFieldElement<T>> double[][] tolerances(final T dP, final FieldOrbit<T> orbit, final OrbitType type) {
611 
612         // estimate the scalar velocity error
613         final FieldPVCoordinates<T> pv = orbit.getPVCoordinates();
614         final T r2 = pv.getPosition().getNormSq();
615         final T v  = pv.getVelocity().getNorm();
616         final T dV = dP.multiply(orbit.getMu()).divide(v.multiply(r2));
617 
618         return tolerances(dP, dV, orbit, type);
619 
620     }
621 
622     /** Estimate tolerance vectors for integrators when propagating in orbits.
623      * <p>
624      * The errors are estimated from partial derivatives properties of orbits,
625      * starting from scalar position and velocity errors specified by the user.
626      * <p>
627      * The tolerances are only <em>orders of magnitude</em>, and integrator tolerances
628      * are only local estimates, not global ones. So some care must be taken when using
629      * these tolerances. Setting 1mm as a position error does NOT mean the tolerances
630      * will guarantee a 1mm error position after several orbits integration.
631      * </p>
632      * @param <T> elements type
633      * @param dP user specified position error
634      * @param dV user specified velocity error
635      * @param orbit reference orbit
636      * @param type propagation type for the meaning of the tolerance vectors elements
637      * (it may be different from {@code orbit.getType()})
638      * @return a two rows array, row 0 being the absolute tolerance error and row 1
639      * being the relative tolerance error
640      * @since 10.3
641      */
642     public static <T extends CalculusFieldElement<T>> double[][] tolerances(final T dP, final T dV,
643                                                                         final FieldOrbit<T> orbit, final OrbitType type) {
644 
645         final double[] absTol = new double[7];
646         final double[] relTol = new double[7];
647 
648         // we set the mass tolerance arbitrarily to 1.0e-6 kg, as mass evolves linearly
649         // with trust, this often has no influence at all on propagation
650         absTol[6] = 1.0e-6;
651 
652         if (type == OrbitType.CARTESIAN) {
653             absTol[0] = dP.getReal();
654             absTol[1] = dP.getReal();
655             absTol[2] = dP.getReal();
656             absTol[3] = dV.getReal();
657             absTol[4] = dV.getReal();
658             absTol[5] = dV.getReal();
659         } else {
660 
661             // convert the orbit to the desired type
662             final T[][] jacobian = MathArrays.buildArray(dP.getField(), 6, 6);
663             final FieldOrbit<T> converted = type.convertType(orbit);
664             converted.getJacobianWrtCartesian(PositionAngle.TRUE, jacobian);
665 
666             for (int i = 0; i < 6; ++i) {
667                 final  T[] row = jacobian[i];
668                 absTol[i] =     row[0].abs().multiply(dP).
669                             add(row[1].abs().multiply(dP)).
670                             add(row[2].abs().multiply(dP)).
671                             add(row[3].abs().multiply(dV)).
672                             add(row[4].abs().multiply(dV)).
673                             add(row[5].abs().multiply(dV)).
674                             getReal();
675                 if (Double.isNaN(absTol[i])) {
676                     throw new OrekitException(OrekitMessages.SINGULAR_JACOBIAN_FOR_ORBIT_TYPE, type);
677                 }
678             }
679 
680         }
681 
682         Arrays.fill(relTol, dP.divide(orbit.getPVCoordinates().getPosition().getNormSq().sqrt()).getReal());
683 
684         return new double[][] { absTol, relTol };
685 
686     }
687 
688 }
689