1 /* Copyright 2010-2011 Centre National d'Études Spatiales
2 * Licensed to CS GROUP (CS) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * CS licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17 package org.orekit.propagation.numerical;
18
19 import java.util.IdentityHashMap;
20 import java.util.Map;
21
22 import org.hipparchus.analysis.differentiation.Gradient;
23 import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
24 import org.orekit.errors.OrekitException;
25 import org.orekit.errors.OrekitMessages;
26 import org.orekit.forces.ForceModel;
27 import org.orekit.propagation.FieldSpacecraftState;
28 import org.orekit.propagation.SpacecraftState;
29 import org.orekit.propagation.integration.AdditionalDerivativesProvider;
30 import org.orekit.time.AbsoluteDate;
31 import org.orekit.utils.ParameterDriver;
32 import org.orekit.utils.ParameterDriversList;
33
34 /** {@link AdditionalDerivativesProvider derivatives provider} computing the partial derivatives
35 * of the state (orbit) with respect to initial state and force models parameters.
36 * <p>
37 * This set of equations are automatically added to a {@link NumericalPropagator numerical propagator}
38 * in order to compute partial derivatives of the orbit along with the orbit itself. This is
39 * useful for example in orbit determination applications.
40 * </p>
41 * <p>
42 * The partial derivatives with respect to initial state can be either dimension 6
43 * (orbit only) or 7 (orbit and mass).
44 * </p>
45 * <p>
46 * The partial derivatives with respect to force models parameters has a dimension
47 * equal to the number of selected parameters. Parameters selection is implemented at
48 * {@link ForceModel force models} level. Users must retrieve a {@link ParameterDriver
49 * parameter driver} using {@link ForceModel#getParameterDriver(String)} and then
50 * select it by calling {@link ParameterDriver#setSelected(boolean) setSelected(true)}.
51 * </p>
52 * <p>
53 * If several force models provide different {@link ParameterDriver drivers} for the
54 * same parameter name, selecting any of these drivers has the side effect of
55 * selecting all the drivers for this shared parameter. In this case, the partial
56 * derivatives will be the sum of the partial derivatives contributed by the
57 * corresponding force models. This case typically arises for central attraction
58 * coefficient, which has an influence on {@link org.orekit.forces.gravity.NewtonianAttraction
59 * Newtonian attraction}, {@link org.orekit.forces.gravity.HolmesFeatherstoneAttractionModel
60 * gravity field}, and {@link org.orekit.forces.gravity.Relativity relativity}.
61 * </p>
62 * @author Véronique Pommier-Maurussane
63 * @author Luc Maisonobe
64 * @deprecated as of 11.1, replaced by {@link
65 * org.orekit.propagation.Propagator#setupMatricesComputation(String,
66 * org.hipparchus.linear.RealMatrix, org.orekit.utils.DoubleArrayDictionary)}
67 */
68 @Deprecated
69 public class PartialDerivativesEquations
70 implements AdditionalDerivativesProvider,
71 org.orekit.propagation.integration.AdditionalEquations {
72
73 /** Propagator computing state evolution. */
74 private final NumericalPropagator propagator;
75
76 /** Selected parameters for Jacobian computation. */
77 private ParameterDriversList selected;
78
79 /** Parameters map. */
80 private Map<ParameterDriver, Integer> map;
81
82 /** Name. */
83 private final String name;
84
85 /** Flag for Jacobian matrices initialization. */
86 private boolean initialized;
87
88 /** Simple constructor.
89 * <p>
90 * Upon construction, this set of equations is <em>automatically</em> added to
91 * the propagator by calling its {@link
92 * NumericalPropagator#addAdditionalDerivativesProvider(AdditionalDerivativesProvider)} method. So
93 * there is no need to call this method explicitly for these equations.
94 * </p>
95 * @param name name of the partial derivatives equations
96 * @param propagator the propagator that will handle the orbit propagation
97 */
98 public PartialDerivativesEquations(final String name, final NumericalPropagator propagator) {
99 this.name = name;
100 this.selected = null;
101 this.map = null;
102 this.propagator = propagator;
103 this.initialized = false;
104 propagator.addAdditionalDerivativesProvider(this);
105 }
106
107 /** {@inheritDoc} */
108 public String getName() {
109 return name;
110 }
111
112 /** {@inheritDoc} */
113 @Override
114 public int getDimension() {
115 freezeParametersSelection();
116 return 6 * (6 + selected.getNbParams());
117 }
118
119 /** Freeze the selected parameters from the force models.
120 */
121 private void freezeParametersSelection() {
122 if (selected == null) {
123
124 // first pass: gather all parameters, binding similar names together
125 selected = new ParameterDriversList();
126 for (final ForceModel provider : propagator.getAllForceModels()) {
127 for (final ParameterDriver driver : provider.getParametersDrivers()) {
128 selected.add(driver);
129 }
130 }
131
132 // second pass: now that shared parameter names are bound together,
133 // their selections status have been synchronized, we can filter them
134 selected.filter(true);
135
136 // third pass: sort parameters lexicographically
137 selected.sort();
138
139 // fourth pass: set up a map between parameters drivers and matrices columns
140 map = new IdentityHashMap<ParameterDriver, Integer>();
141 int parameterIndex = 0;
142 for (final ParameterDriver selectedDriver : selected.getDrivers()) {
143 for (final ForceModel provider : propagator.getAllForceModels()) {
144 for (final ParameterDriver driver : provider.getParametersDrivers()) {
145 if (driver.getName().equals(selectedDriver.getName())) {
146 map.put(driver, parameterIndex);
147 }
148 }
149 }
150 ++parameterIndex;
151 }
152
153 }
154 }
155
156 /** Get the selected parameters, in Jacobian matrix column order.
157 * <p>
158 * The force models parameters for which partial derivatives are desired,
159 * <em>must</em> have been {@link ParameterDriver#setSelected(boolean) selected}
160 * before this method is called, so the proper list is returned.
161 * </p>
162 * @return selected parameters, in Jacobian matrix column order which
163 * is lexicographic order
164 */
165 public ParameterDriversList getSelectedParameters() {
166 freezeParametersSelection();
167 return selected;
168 }
169
170 /** Set the initial value of the Jacobian with respect to state and parameter.
171 * <p>
172 * This method is equivalent to call {@link #setInitialJacobians(SpacecraftState,
173 * double[][], double[][])} with dYdY0 set to the identity matrix and dYdP set
174 * to a zero matrix.
175 * </p>
176 * <p>
177 * The force models parameters for which partial derivatives are desired,
178 * <em>must</em> have been {@link ParameterDriver#setSelected(boolean) selected}
179 * before this method is called, so proper matrices dimensions are used.
180 * </p>
181 * @param s0 initial state
182 * @return state with initial Jacobians added
183 * @see #getSelectedParameters()
184 * @since 9.0
185 */
186 public SpacecraftState setInitialJacobians(final SpacecraftState s0) {
187 freezeParametersSelection();
188 final int stateDimension = 6;
189 final double[][] dYdY0 = new double[stateDimension][stateDimension];
190 final double[][] dYdP = new double[stateDimension][selected.getNbParams()];
191 for (int i = 0; i < stateDimension; ++i) {
192 dYdY0[i][i] = 1.0;
193 }
194 return setInitialJacobians(s0, dYdY0, dYdP);
195 }
196
197 /** Set the initial value of the Jacobian with respect to state and parameter.
198 * <p>
199 * The returned state must be added to the propagator (it is not done
200 * automatically, as the user may need to add more states to it).
201 * </p>
202 * <p>
203 * The force models parameters for which partial derivatives are desired,
204 * <em>must</em> have been {@link ParameterDriver#setSelected(boolean) selected}
205 * before this method is called, and the {@code dY1dP} matrix dimension <em>must</em>
206 * be consistent with the selection.
207 * </p>
208 * @param s1 current state
209 * @param dY1dY0 Jacobian of current state at time t₁ with respect
210 * to state at some previous time t₀ (must be 6x6)
211 * @param dY1dP Jacobian of current state at time t₁ with respect
212 * to parameters (may be null if no parameters are selected)
213 * @return state with initial Jacobians added
214 * @see #getSelectedParameters()
215 */
216 public SpacecraftState setInitialJacobians(final SpacecraftState s1,
217 final double[][] dY1dY0, final double[][] dY1dP) {
218
219 freezeParametersSelection();
220
221 // Check dimensions
222 final int stateDim = dY1dY0.length;
223 if (stateDim != 6 || stateDim != dY1dY0[0].length) {
224 throw new OrekitException(OrekitMessages.STATE_JACOBIAN_NOT_6X6,
225 stateDim, dY1dY0[0].length);
226 }
227 if (dY1dP != null && stateDim != dY1dP.length) {
228 throw new OrekitException(OrekitMessages.STATE_AND_PARAMETERS_JACOBIANS_ROWS_MISMATCH,
229 stateDim, dY1dP.length);
230 }
231 if (dY1dP == null && selected.getNbParams() != 0 ||
232 dY1dP != null && selected.getNbParams() != dY1dP[0].length) {
233 throw new OrekitException(new OrekitException(OrekitMessages.INITIAL_MATRIX_AND_PARAMETERS_NUMBER_MISMATCH,
234 dY1dP == null ? 0 : dY1dP[0].length, selected.getNbParams()));
235 }
236
237 // store the matrices as a single dimension array
238 initialized = true;
239 final JacobiansMapper mapper = getMapper();
240 final double[] p = new double[mapper.getAdditionalStateDimension()];
241 mapper.setInitialJacobians(s1, dY1dY0, dY1dP, p);
242
243 // set value in propagator
244 return s1.addAdditionalState(name, p);
245
246 }
247
248 /** Get a mapper between two-dimensional Jacobians and one-dimensional additional state.
249 * @return a mapper between two-dimensional Jacobians and one-dimensional additional state,
250 * with the same name as the instance
251 * @see #setInitialJacobians(SpacecraftState)
252 * @see #setInitialJacobians(SpacecraftState, double[][], double[][])
253 */
254 public JacobiansMapper getMapper() {
255 if (!initialized) {
256 throw new OrekitException(OrekitMessages.STATE_JACOBIAN_NOT_INITIALIZED);
257 }
258 return new JacobiansMapper(name, selected,
259 propagator.getOrbitType(),
260 propagator.getPositionAngleType());
261 }
262
263 /** {@inheritDoc} */
264 public void init(final SpacecraftState initialState, final AbsoluteDate target) {
265 // FIXME: remove in 12.0 when AdditionalEquations is removed
266 AdditionalDerivativesProvider.super.init(initialState, target);
267 }
268
269 /** {@inheritDoc} */
270 public double[] computeDerivatives(final SpacecraftState s, final double[] pDot) {
271 // FIXME: remove in 12.0 when AdditionalEquations is removed
272 System.arraycopy(derivatives(s), 0, pDot, 0, pDot.length);
273 return null;
274 }
275
276 /** {@inheritDoc} */
277 public double[] derivatives(final SpacecraftState s) {
278
279 // initialize acceleration Jacobians to zero
280 final int paramDim = selected.getNbParams();
281 final int dim = 3;
282 final double[][] dAccdParam = new double[dim][paramDim];
283 final double[][] dAccdPos = new double[dim][dim];
284 final double[][] dAccdVel = new double[dim][dim];
285
286 final NumericalGradientConverter fullConverter = new NumericalGradientConverter(s, 6, propagator.getAttitudeProvider());
287 final NumericalGradientConverter posOnlyConverter = new NumericalGradientConverter(s, 3, propagator.getAttitudeProvider());
288
289 // compute acceleration Jacobians, finishing with the largest force: Newtonian attraction
290 for (final ForceModel forceModel : propagator.getAllForceModels()) {
291
292 final NumericalGradientConverter converter = forceModel.dependsOnPositionOnly() ? posOnlyConverter : fullConverter;
293 final FieldSpacecraftState<Gradient> dsState = converter.getState(forceModel);
294 final Gradient[] parameters = converter.getParameters(dsState, forceModel);
295
296 final FieldVector3D<Gradient> acceleration = forceModel.acceleration(dsState, parameters);
297 final double[] derivativesX = acceleration.getX().getGradient();
298 final double[] derivativesY = acceleration.getY().getGradient();
299 final double[] derivativesZ = acceleration.getZ().getGradient();
300
301 // update Jacobians with respect to state
302 addToRow(derivativesX, 0, converter.getFreeStateParameters(), dAccdPos, dAccdVel);
303 addToRow(derivativesY, 1, converter.getFreeStateParameters(), dAccdPos, dAccdVel);
304 addToRow(derivativesZ, 2, converter.getFreeStateParameters(), dAccdPos, dAccdVel);
305
306 int index = converter.getFreeStateParameters();
307 for (ParameterDriver driver : forceModel.getParametersDrivers()) {
308 if (driver.isSelected()) {
309 final int parameterIndex = map.get(driver);
310 dAccdParam[0][parameterIndex] += derivativesX[index];
311 dAccdParam[1][parameterIndex] += derivativesY[index];
312 dAccdParam[2][parameterIndex] += derivativesZ[index];
313 ++index;
314 }
315 }
316
317 }
318
319 // the variational equations of the complete state Jacobian matrix have the following form:
320
321 // [ | ] [ | ] [ | ]
322 // [ Adot | Bdot ] [ dVel/dPos = 0 | dVel/dVel = Id ] [ A | B ]
323 // [ | ] [ | ] [ | ]
324 // ---------+--------- ------------------+------------------- * ------+------
325 // [ | ] [ | ] [ | ]
326 // [ Cdot | Ddot ] = [ dAcc/dPos | dAcc/dVel ] [ C | D ]
327 // [ | ] [ | ] [ | ]
328
329 // The A, B, C and D sub-matrices and their derivatives (Adot ...) are 3x3 matrices
330
331 // The expanded multiplication above can be rewritten to take into account
332 // the fixed values found in the sub-matrices in the left factor. This leads to:
333
334 // [ Adot ] = [ C ]
335 // [ Bdot ] = [ D ]
336 // [ Cdot ] = [ dAcc/dPos ] * [ A ] + [ dAcc/dVel ] * [ C ]
337 // [ Ddot ] = [ dAcc/dPos ] * [ B ] + [ dAcc/dVel ] * [ D ]
338
339 // The following loops compute these expressions taking care of the mapping of the
340 // (A, B, C, D) matrices into the single dimension array p and of the mapping of the
341 // (Adot, Bdot, Cdot, Ddot) matrices into the single dimension array pDot.
342
343 // copy C and E into Adot and Bdot
344 final int stateDim = 6;
345 final double[] p = s.getAdditionalState(getName());
346 final double[] pDot = new double[p.length];
347 System.arraycopy(p, dim * stateDim, pDot, 0, dim * stateDim);
348
349 // compute Cdot and Ddot
350 for (int i = 0; i < dim; ++i) {
351 final double[] dAdPi = dAccdPos[i];
352 final double[] dAdVi = dAccdVel[i];
353 for (int j = 0; j < stateDim; ++j) {
354 pDot[(dim + i) * stateDim + j] =
355 dAdPi[0] * p[j] + dAdPi[1] * p[j + stateDim] + dAdPi[2] * p[j + 2 * stateDim] +
356 dAdVi[0] * p[j + 3 * stateDim] + dAdVi[1] * p[j + 4 * stateDim] + dAdVi[2] * p[j + 5 * stateDim];
357 }
358 }
359
360 for (int k = 0; k < paramDim; ++k) {
361 // the variational equations of the parameters Jacobian matrix are computed
362 // one column at a time, they have the following form:
363 // [ ] [ | ] [ ] [ ]
364 // [ Edot ] [ dVel/dPos = 0 | dVel/dVel = Id ] [ E ] [ dVel/dParam = 0 ]
365 // [ ] [ | ] [ ] [ ]
366 // -------- ------------------+------------------- * ----- + --------------------
367 // [ ] [ | ] [ ] [ ]
368 // [ Fdot ] = [ dAcc/dPos | dAcc/dVel ] [ F ] [ dAcc/dParam ]
369 // [ ] [ | ] [ ] [ ]
370
371 // The E and F sub-columns and their derivatives (Edot, Fdot) are 3 elements columns.
372
373 // The expanded multiplication and addition above can be rewritten to take into
374 // account the fixed values found in the sub-matrices in the left factor. This leads to:
375
376 // [ Edot ] = [ F ]
377 // [ Fdot ] = [ dAcc/dPos ] * [ E ] + [ dAcc/dVel ] * [ F ] + [ dAcc/dParam ]
378
379 // The following loops compute these expressions taking care of the mapping of the
380 // (E, F) columns into the single dimension array p and of the mapping of the
381 // (Edot, Fdot) columns into the single dimension array pDot.
382
383 // copy F into Edot
384 final int columnTop = stateDim * stateDim + k;
385 pDot[columnTop] = p[columnTop + 3 * paramDim];
386 pDot[columnTop + paramDim] = p[columnTop + 4 * paramDim];
387 pDot[columnTop + 2 * paramDim] = p[columnTop + 5 * paramDim];
388
389 // compute Fdot
390 for (int i = 0; i < dim; ++i) {
391 final double[] dAdPi = dAccdPos[i];
392 final double[] dAdVi = dAccdVel[i];
393 pDot[columnTop + (dim + i) * paramDim] =
394 dAccdParam[i][k] +
395 dAdPi[0] * p[columnTop] + dAdPi[1] * p[columnTop + paramDim] + dAdPi[2] * p[columnTop + 2 * paramDim] +
396 dAdVi[0] * p[columnTop + 3 * paramDim] + dAdVi[1] * p[columnTop + 4 * paramDim] + dAdVi[2] * p[columnTop + 5 * paramDim];
397 }
398
399 }
400
401 return pDot;
402
403 }
404
405 /** Get the flag for the initialization of the state jacobian.
406 * @return true if the state jacobian is initialized
407 * @since 10.2
408 */
409 public boolean isInitialize() {
410 return initialized;
411 }
412
413 /** Fill Jacobians rows.
414 * @param derivatives derivatives of a component of acceleration (along either x, y or z)
415 * @param index component index (0 for x, 1 for y, 2 for z)
416 * @param freeStateParameters number of free parameters, either 3 (position),
417 * 6 (position-velocity) or 7 (position-velocity-mass)
418 * @param dAccdPos Jacobian of acceleration with respect to spacecraft position
419 * @param dAccdVel Jacobian of acceleration with respect to spacecraft velocity
420 */
421 private void addToRow(final double[] derivatives, final int index, final int freeStateParameters,
422 final double[][] dAccdPos, final double[][] dAccdVel) {
423
424 for (int i = 0; i < 3; ++i) {
425 dAccdPos[index][i] += derivatives[i];
426 }
427 if (freeStateParameters > 3) {
428 for (int i = 0; i < 3; ++i) {
429 dAccdVel[index][i] += derivatives[i + 3];
430 }
431 }
432
433 }
434
435 }
436