1   /* Copyright 2002-2022 CS GROUP
2    * Licensed to CS GROUP (CS) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * CS licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *   http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  package org.orekit.propagation;
18  
19  import java.util.Collection;
20  import java.util.List;
21  
22  import org.hipparchus.geometry.euclidean.threed.Rotation;
23  import org.hipparchus.linear.RealMatrix;
24  import org.orekit.attitudes.AttitudeProvider;
25  import org.orekit.attitudes.InertialProvider;
26  import org.orekit.frames.Frame;
27  import org.orekit.frames.Frames;
28  import org.orekit.propagation.events.EventDetector;
29  import org.orekit.propagation.sampling.OrekitFixedStepHandler;
30  import org.orekit.propagation.sampling.OrekitStepHandler;
31  import org.orekit.propagation.sampling.StepHandlerMultiplexer;
32  import org.orekit.time.AbsoluteDate;
33  import org.orekit.utils.DoubleArrayDictionary;
34  import org.orekit.utils.PVCoordinatesProvider;
35  
36  /** This interface provides a way to propagate an orbit at any time.
37   *
38   * <p>This interface is the top-level abstraction for orbit propagation.
39   * It only allows propagation to a predefined date.
40   * It is implemented by analytical models which have no time limit,
41   * by orbit readers based on external data files, by numerical integrators
42   * using rich force models and by continuous models built after numerical
43   * integration has been completed and dense output data as been
44   * gathered.</p>
45   * <p>Note that one single propagator cannot be called from multiple threads.
46   * Its configuration can be changed as there is at least a {@link
47   * #resetInitialState(SpacecraftState)} method, and even propagators that do
48   * not support resetting state (like the {@link
49   * org.orekit.propagation.analytical.tle.TLEPropagator TLEPropagator} do
50   * cache some internal data during computation. However, as long as they
51   * are configured with independent building blocks (mainly event handlers
52   * and step handlers that may preserve some internal state), and as long
53   * as they are called from one thread only, they <em>can</em> be used in
54   * multi-threaded applications. Synchronizing several propagators to run in
55   * parallel is also possible using {@link PropagatorsParallelizer}.</p>
56   * @author Luc Maisonobe
57   * @author V&eacute;ronique Pommier-Maurussane
58   *
59   */
60  
61  public interface Propagator extends PVCoordinatesProvider {
62  
63      /** Default mass. */
64      double DEFAULT_MASS = 1000.0;
65  
66      /**
67       * Get a default law using the given frames.
68       *
69       * @param frames the set of frames to use.
70       * @return attitude law.
71       */
72      static AttitudeProvider getDefaultLaw(final Frames frames) {
73          return new InertialProvider(Rotation.IDENTITY, frames.getEME2000());
74      }
75  
76      /** Get the multiplexer holding all step handlers.
77       * @return multiplexer holding all step handlers
78       * @since 11.0
79       */
80      StepHandlerMultiplexer getMultiplexer();
81  
82      /** Remove all step handlers.
83       * <p>This convenience method is equivalent to call {@code getMultiplexer().clear()}</p>
84       * @see #getMultiplexer()
85       * @see StepHandlerMultiplexer#clear()
86       * @since 11.0
87       */
88      default void clearStepHandlers() {
89          getMultiplexer().clear();
90      }
91  
92      /** Set a single handler for fixed stepsizes.
93       * <p>This convenience method is equivalent to call {@code getMultiplexer().clear()}
94       * followed by {@code getMultiplexer().add(h, handler)}</p>
95       * @param h fixed stepsize (s)
96       * @param handler handler called at the end of each finalized step
97       * @see #getMultiplexer()
98       * @see StepHandlerMultiplexer#add(double, OrekitFixedStepHandler)
99       * @since 11.0
100      */
101     default void setStepHandler(final double h, final OrekitFixedStepHandler handler) {
102         getMultiplexer().clear();
103         getMultiplexer().add(h, handler);
104     }
105 
106     /** Set a single handler for variable stepsizes.
107      * <p>This convenience method is equivalent to call {@code getMultiplexer().clear()}
108      * followed by {@code getMultiplexer().add(handler)}</p>
109      * @param handler handler called at the end of each finalized step
110      * @see #getMultiplexer()
111      * @see StepHandlerMultiplexer#add(OrekitStepHandler)
112      * @since 11.0
113      */
114     default void setStepHandler(final OrekitStepHandler handler) {
115         getMultiplexer().clear();
116         getMultiplexer().add(handler);
117     }
118 
119     /**
120      * Set up an ephemeris generator that will monitor the propagation for building
121      * an ephemeris from it once completed.
122      *
123      * <p>
124      * This generator can be used when the user needs fast random access to the orbit
125      * state at any time between the initial and target times. A typical example is the
126      * implementation of search and iterative algorithms that may navigate forward and
127      * backward inside the propagation range before finding their result even if the
128      * propagator used is integration-based and only goes from one initial time to one
129      * target time.
130      * </p>
131      * <p>
132      * Beware that when used with integration-based propagators, the generator will
133      * store <strong>all</strong> intermediate results. It is therefore memory intensive
134      * for long integration-based ranges and high precision/short time steps. When
135      * used with analytical propagators, the generator only stores start/stop time
136      * and a reference to the analytical propagator itself to call it back as needed,
137      * so it is less memory intensive.
138      * </p>
139      * <p>
140      * The returned ephemeris generator will be initially empty, it will be filled
141      * with propagation data when a subsequent call to either {@link #propagate(AbsoluteDate)
142      * propagate(target)} or {@link #propagate(AbsoluteDate, AbsoluteDate)
143      * propagate(start, target)} is called. The proper way to use this method is
144      * therefore to do:
145      * </p>
146      * <pre>
147      *   EphemerisGenerator generator = propagator.getEphemerisGenerator();
148      *   propagator.propagate(target);
149      *   BoundedPropagator ephemeris = generator.getGeneratedEphemeris();
150      * </pre>
151      * @return ephemeris generator
152      */
153     EphemerisGenerator getEphemerisGenerator();
154 
155     /** Get the propagator initial state.
156      * @return initial state
157      */
158     SpacecraftState getInitialState();
159 
160     /** Reset the propagator initial state.
161      * @param state new initial state to consider
162      */
163     void resetInitialState(SpacecraftState state);
164 
165     /** Add a set of user-specified state parameters to be computed along with the orbit propagation.
166      * @param additionalStateProvider provider for additional state
167      */
168     void addAdditionalStateProvider(AdditionalStateProvider additionalStateProvider);
169 
170     /** Get an unmodifiable list of providers for additional state.
171      * @return providers for the additional states
172      */
173     List<AdditionalStateProvider> getAdditionalStateProviders();
174 
175     /** Check if an additional state is managed.
176      * <p>
177      * Managed states are states for which the propagators know how to compute
178      * its evolution. They correspond to additional states for which a
179      * {@link AdditionalStateProvider provider} has been registered by calling the
180      * {@link #addAdditionalStateProvider(AdditionalStateProvider) addAdditionalStateProvider} method.
181      * </p>
182      * <p>
183      * Additional states that are present in the {@link #getInitialState() initial state}
184      * but have no evolution method registered are <em>not</em> considered as managed states.
185      * These unmanaged additional states are not lost during propagation, though. Their
186      * value are piecewise constant between state resets that may change them if some
187      * event handler {@link
188      * org.orekit.propagation.events.handlers.EventHandler#resetState(EventDetector,
189      * SpacecraftState) resetState} method is called at an event occurrence and happens
190      * to change the unmanaged additional state.
191      * </p>
192      * @param name name of the additional state
193      * @return true if the additional state is managed
194      */
195     boolean isAdditionalStateManaged(String name);
196 
197     /** Get all the names of all managed states.
198      * @return names of all managed states
199      */
200     String[] getManagedAdditionalStates();
201 
202     /** Add an event detector.
203      * @param detector event detector to add
204      * @see #clearEventsDetectors()
205      * @see #getEventsDetectors()
206      * @param <T> class type for the generic version
207      */
208     <T extends EventDetector> void addEventDetector(T detector);
209 
210     /** Get all the events detectors that have been added.
211      * @return an unmodifiable collection of the added detectors
212      * @see #addEventDetector(EventDetector)
213      * @see #clearEventsDetectors()
214      */
215     Collection<EventDetector> getEventsDetectors();
216 
217     /** Remove all events detectors.
218      * @see #addEventDetector(EventDetector)
219      * @see #getEventsDetectors()
220      */
221     void clearEventsDetectors();
222 
223     /** Get attitude provider.
224      * @return attitude provider
225      */
226     AttitudeProvider getAttitudeProvider();
227 
228     /** Set attitude provider.
229      * @param attitudeProvider attitude provider
230      */
231     void setAttitudeProvider(AttitudeProvider attitudeProvider);
232 
233     /** Get the frame in which the orbit is propagated.
234      * <p>
235      * The propagation frame is the definition frame of the initial
236      * state, so this method should be called after this state has
237      * been set, otherwise it may return null.
238      * </p>
239      * @return frame in which the orbit is propagated
240      * @see #resetInitialState(SpacecraftState)
241      */
242     Frame getFrame();
243 
244     /** Set up computation of State Transition Matrix and Jacobians matrix with respect to parameters.
245      * <p>
246      * If this method is called, both State Transition Matrix and Jacobians with respect to the
247      * force models parameters that will be selected when propagation starts will be automatically
248      * computed, and the harvester will allow to retrieve them.
249      * </p>
250      * <p>
251      * The arguments for initial matrices <em>must</em> be compatible with the {@link org.orekit.orbits.OrbitType
252      * orbit type} and {@link org.orekit.orbits.PositionAngle position angle} that will be used by the propagator.
253      * </p>
254      * <p>
255      * The default implementation throws an exception as the method is not supported by all propagators.
256      * </p>
257      * @param stmName State Transition Matrix state name
258      * @param initialStm initial State Transition Matrix ∂Y/∂Y₀,
259      * if null (which is the most frequent case), assumed to be 6x6 identity
260      * @param initialJacobianColumns initial columns of the Jacobians matrix with respect to parameters,
261      * if null or if some selected parameters are missing from the dictionary, the corresponding
262      * initial column is assumed to be 0
263      * @return harvester to retrieve computed matrices during and after propagation
264      * @since 11.1
265      */
266     default MatricesHarvester setupMatricesComputation(final String stmName, final RealMatrix initialStm,
267                                                        final DoubleArrayDictionary initialJacobianColumns) {
268         throw new UnsupportedOperationException();
269     }
270 
271     /** Propagate towards a target date.
272      * <p>Simple propagators use only the target date as the specification for
273      * computing the propagated state. More feature rich propagators can consider
274      * other information and provide different operating modes or G-stop
275      * facilities to stop at pinpointed events occurrences. In these cases, the
276      * target date is only a hint, not a mandatory objective.</p>
277      * @param target target date towards which orbit state should be propagated
278      * @return propagated state
279      */
280     SpacecraftState propagate(AbsoluteDate target);
281 
282     /** Propagate from a start date towards a target date.
283      * <p>Those propagators use a start date and a target date to
284      * compute the propagated state. For propagators using event detection mechanism,
285      * if the provided start date is different from the initial state date, a first,
286      * simple propagation is performed, without processing any event computation.
287      * Then complete propagation is performed from start date to target date.</p>
288      * @param start start date from which orbit state should be propagated
289      * @param target target date to which orbit state should be propagated
290      * @return propagated state
291      */
292     SpacecraftState propagate(AbsoluteDate start, AbsoluteDate target);
293 
294 }