1 /* Copyright 2002-2022 CS GROUP 2 * Licensed to CS GROUP (CS) under one or more 3 * contributor license agreements. See the NOTICE file distributed with 4 * this work for additional information regarding copyright ownership. 5 * CS licenses this file to You under the Apache License, Version 2.0 6 * (the "License"); you may not use this file except in compliance with 7 * the License. You may obtain a copy of the License at 8 * 9 * http://www.apache.org/licenses/LICENSE-2.0 10 * 11 * Unless required by applicable law or agreed to in writing, software 12 * distributed under the License is distributed on an "AS IS" BASIS, 13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 * See the License for the specific language governing permissions and 15 * limitations under the License. 16 */ 17 package org.orekit.frames; 18 19 import java.io.Serializable; 20 import java.util.function.BiFunction; 21 import java.util.function.Function; 22 23 import org.hipparchus.CalculusFieldElement; 24 import org.hipparchus.Field; 25 import org.orekit.errors.OrekitIllegalArgumentException; 26 import org.orekit.errors.OrekitMessages; 27 import org.orekit.time.AbsoluteDate; 28 import org.orekit.time.FieldAbsoluteDate; 29 30 31 /** Tridimensional references frames class. 32 * 33 * <h2> Frame Presentation </h2> 34 * <p>This class is the base class for all frames in OREKIT. The frames are 35 * linked together in a tree with some specific frame chosen as the root of the tree. 36 * Each frame is defined by {@link Transform transforms} combining any number 37 * of translations and rotations from a reference frame which is its 38 * parent frame in the tree structure.</p> 39 * <p>When we say a {@link Transform transform} t is <em>from frame<sub>A</sub> 40 * to frame<sub>B</sub></em>, we mean that if the coordinates of some absolute 41 * vector (say the direction of a distant star for example) has coordinates 42 * u<sub>A</sub> in frame<sub>A</sub> and u<sub>B</sub> in frame<sub>B</sub>, 43 * then u<sub>B</sub>={@link 44 * Transform#transformVector(org.hipparchus.geometry.euclidean.threed.Vector3D) 45 * t.transformVector(u<sub>A</sub>)}. 46 * <p>The transforms may be constant or varying, depending on the implementation of 47 * the {@link TransformProvider transform provider} used to define the frame. For simple 48 * fixed transforms, using {@link FixedTransformProvider} is sufficient. For varying 49 * transforms (time-dependent or telemetry-based for example), it may be useful to define 50 * specific implementations of {@link TransformProvider transform provider}.</p> 51 * 52 * @author Guylaine Prat 53 * @author Luc Maisonobe 54 * @author Pascal Parraud 55 */ 56 public class Frame implements Serializable { 57 58 /** Serializable UID. */ 59 private static final long serialVersionUID = -6981146543760234087L; 60 61 /** Parent frame (only the root frame doesn't have a parent). */ 62 private final Frame parent; 63 64 /** Depth of the frame with respect to tree root. */ 65 private final int depth; 66 67 /** Provider for transform from parent frame to instance. */ 68 private final TransformProvider transformProvider; 69 70 /** Instance name. */ 71 private final String name; 72 73 /** Indicator for pseudo-inertial frames. */ 74 private final boolean pseudoInertial; 75 76 /** Private constructor used only for the root frame. 77 * @param name name of the frame 78 * @param pseudoInertial true if frame is considered pseudo-inertial 79 * (i.e. suitable for propagating orbit) 80 */ 81 private Frame(final String name, final boolean pseudoInertial) { 82 parent = null; 83 depth = 0; 84 transformProvider = new FixedTransformProvider(Transform.IDENTITY); 85 this.name = name; 86 this.pseudoInertial = pseudoInertial; 87 } 88 89 /** Build a non-inertial frame from its transform with respect to its parent. 90 * <p>calling this constructor is equivalent to call 91 * <code>{link {@link #Frame(Frame, Transform, String, boolean) 92 * Frame(parent, transform, name, false)}</code>.</p> 93 * @param parent parent frame (must be non-null) 94 * @param transform transform from parent frame to instance 95 * @param name name of the frame 96 * @exception IllegalArgumentException if the parent frame is null 97 */ 98 public Frame(final Frame parent, final Transform transform, final String name) 99 throws IllegalArgumentException { 100 this(parent, transform, name, false); 101 } 102 103 /** Build a non-inertial frame from its transform with respect to its parent. 104 * <p>calling this constructor is equivalent to call 105 * <code>{link {@link #Frame(Frame, Transform, String, boolean) 106 * Frame(parent, transform, name, false)}</code>.</p> 107 * @param parent parent frame (must be non-null) 108 * @param transformProvider provider for transform from parent frame to instance 109 * @param name name of the frame 110 * @exception IllegalArgumentException if the parent frame is null 111 */ 112 public Frame(final Frame parent, final TransformProvider transformProvider, final String name) 113 throws IllegalArgumentException { 114 this(parent, transformProvider, name, false); 115 } 116 117 /** Build a frame from its transform with respect to its parent. 118 * <p>The convention for the transform is that it is from parent 119 * frame to instance. This means that the two following frames 120 * are similar:</p> 121 * <pre> 122 * Frame frame1 = new Frame(FramesFactory.getGCRF(), new Transform(t1, t2)); 123 * Frame frame2 = new Frame(new Frame(FramesFactory.getGCRF(), t1), t2); 124 * </pre> 125 * @param parent parent frame (must be non-null) 126 * @param transform transform from parent frame to instance 127 * @param name name of the frame 128 * @param pseudoInertial true if frame is considered pseudo-inertial 129 * (i.e. suitable for propagating orbit) 130 * @exception IllegalArgumentException if the parent frame is null 131 */ 132 public Frame(final Frame parent, final Transform transform, final String name, 133 final boolean pseudoInertial) 134 throws IllegalArgumentException { 135 this(parent, new FixedTransformProvider(transform), name, pseudoInertial); 136 } 137 138 /** Build a frame from its transform with respect to its parent. 139 * <p>The convention for the transform is that it is from parent 140 * frame to instance. This means that the two following frames 141 * are similar:</p> 142 * <pre> 143 * Frame frame1 = new Frame(FramesFactory.getGCRF(), new Transform(t1, t2)); 144 * Frame frame2 = new Frame(new Frame(FramesFactory.getGCRF(), t1), t2); 145 * </pre> 146 * @param parent parent frame (must be non-null) 147 * @param transformProvider provider for transform from parent frame to instance 148 * @param name name of the frame 149 * @param pseudoInertial true if frame is considered pseudo-inertial 150 * (i.e. suitable for propagating orbit) 151 * @exception IllegalArgumentException if the parent frame is null 152 */ 153 public Frame(final Frame parent, final TransformProvider transformProvider, final String name, 154 final boolean pseudoInertial) 155 throws IllegalArgumentException { 156 157 if (parent == null) { 158 throw new OrekitIllegalArgumentException(OrekitMessages.NULL_PARENT_FOR_FRAME, name); 159 } 160 this.parent = parent; 161 this.depth = parent.depth + 1; 162 this.transformProvider = transformProvider; 163 this.name = name; 164 this.pseudoInertial = pseudoInertial; 165 166 } 167 168 /** Get the name. 169 * @return the name 170 */ 171 public String getName() { 172 return this.name; 173 } 174 175 /** Check if the frame is pseudo-inertial. 176 * <p>Pseudo-inertial frames are frames that do have a linear motion and 177 * either do not rotate or rotate at a very low rate resulting in 178 * neglectible inertial forces. This means they are suitable for orbit 179 * definition and propagation using Newtonian mechanics. Frames that are 180 * <em>not</em> pseudo-inertial are <em>not</em> suitable for orbit 181 * definition and propagation.</p> 182 * @return true if frame is pseudo-inertial 183 */ 184 public boolean isPseudoInertial() { 185 return pseudoInertial; 186 } 187 188 /** New definition of the java.util toString() method. 189 * @return the name 190 */ 191 public String toString() { 192 return this.name; 193 } 194 195 /** Get the parent frame. 196 * @return parent frame 197 */ 198 public Frame getParent() { 199 return parent; 200 } 201 202 /** Get the depth of the frame. 203 * <p> 204 * The depth of a frame is the number of parents frame between 205 * it and the frames tree root. It is 0 for the root frame, and 206 * the depth of a frame is the depth of its parent frame plus one. 207 * </p> 208 * @return depth of the frame 209 */ 210 public int getDepth() { 211 return depth; 212 } 213 214 /** Get the n<sup>th</sup> ancestor of the frame. 215 * @param n index of the ancestor (0 is the instance, 1 is its parent, 216 * 2 is the parent of its parent...) 217 * @return n<sup>th</sup> ancestor of the frame (must be between 0 218 * and the depth of the frame) 219 * @exception IllegalArgumentException if n is larger than the depth 220 * of the instance 221 */ 222 public Frame getAncestor(final int n) throws IllegalArgumentException { 223 224 // safety check 225 if (n > depth) { 226 throw new OrekitIllegalArgumentException(OrekitMessages.FRAME_NO_NTH_ANCESTOR, 227 name, depth, n); 228 } 229 230 // go upward to find ancestor 231 Frame current = this; 232 for (int i = 0; i < n; ++i) { 233 current = current.parent; 234 } 235 236 return current; 237 238 } 239 240 /** Get the transform from the instance to another frame. 241 * @param destination destination frame to which we want to transform vectors 242 * @param date the date (can be null if it is sure than no date dependent frame is used) 243 * @return transform from the instance to the destination frame 244 */ 245 public Transform getTransformTo(final Frame destination, final AbsoluteDate date) { 246 return getTransformTo( 247 destination, 248 Transform.IDENTITY, 249 frame -> frame.getTransformProvider().getTransform(date), 250 (t1, t2) -> new Transform(date, t1, t2), 251 Transform::getInverse); 252 } 253 254 /** Get the transform from the instance to another frame. 255 * @param destination destination frame to which we want to transform vectors 256 * @param date the date (can be null if it is sure than no date dependent frame is used) 257 * @param <T> the type of the field elements 258 * @return transform from the instance to the destination frame 259 */ 260 public <T extends CalculusFieldElement<T>> FieldTransform<T> getTransformTo(final Frame destination, final FieldAbsoluteDate<T> date) { 261 final Field<T> field = date.getField(); 262 return getTransformTo( 263 destination, 264 FieldTransform.getIdentity(field), 265 frame -> frame.getTransformProvider().getTransform(date), 266 (t1, t2) -> new FieldTransform<>(date, t1, t2), 267 FieldTransform::getInverse); 268 } 269 270 /** 271 * Get the static portion of the transform from the instance to another 272 * frame. The returned transform is static in the sense that it includes 273 * translations and rotations, but not rates. 274 * 275 * <p>This method is often more performant than {@link 276 * #getTransformTo(Frame, AbsoluteDate)} when rates are not needed. 277 * 278 * @param destination destination frame to which we want to transform 279 * vectors 280 * @param date the date (can be null if it is sure than no date 281 * dependent frame is used) 282 * @return static transform from the instance to the destination frame 283 * @since 11.2 284 */ 285 public StaticTransform getStaticTransformTo(final Frame destination, 286 final AbsoluteDate date) { 287 return getTransformTo( 288 destination, 289 StaticTransform.getIdentity(), 290 frame -> frame.getTransformProvider().getStaticTransform(date), 291 (t1, t2) -> StaticTransform.compose(date, t1, t2), 292 StaticTransform::getInverse); 293 } 294 295 /** 296 * Generic get transform method that builds the transform from {@code this} 297 * to {@code destination}. 298 * 299 * @param destination destination frame to which we want to transform 300 * vectors 301 * @param identity transform of the given type. 302 * @param getTransform method to get a transform from a frame. 303 * @param compose method to combine two transforms. 304 * @param inverse method to invert a transform. 305 * @param <T> Type of transform returned. 306 * @return composite transform. 307 */ 308 private <T> T getTransformTo(final Frame destination, 309 final T identity, 310 final Function<Frame, T> getTransform, 311 final BiFunction<T, T, T> compose, 312 final Function<T, T> inverse) { 313 314 if (this == destination) { 315 // shortcut for special case that may be frequent 316 return identity; 317 } 318 319 // common ancestor to both frames in the frames tree 320 final Frame common = findCommon(this, destination); 321 322 // transform from common to instance 323 T commonToInstance = identity; 324 for (Frame frame = this; frame != common; frame = frame.parent) { 325 commonToInstance = compose.apply(getTransform.apply(frame), commonToInstance); 326 } 327 328 // transform from destination up to common 329 T commonToDestination = identity; 330 for (Frame frame = destination; frame != common; frame = frame.parent) { 331 commonToDestination = compose.apply(getTransform.apply(frame), commonToDestination); 332 } 333 334 // transform from instance to destination via common 335 return compose.apply(inverse.apply(commonToInstance), commonToDestination); 336 337 } 338 339 /** Get the provider for transform from parent frame to instance. 340 * @return provider for transform from parent frame to instance 341 */ 342 public TransformProvider getTransformProvider() { 343 return transformProvider; 344 } 345 346 /** Find the deepest common ancestor of two frames in the frames tree. 347 * @param from origin frame 348 * @param to destination frame 349 * @return an ancestor frame of both <code>from</code> and <code>to</code> 350 */ 351 private static Frame findCommon(final Frame from, final Frame to) { 352 353 // select deepest frames that could be the common ancestor 354 Frame currentF = from.depth > to.depth ? from.getAncestor(from.depth - to.depth) : from; 355 Frame currentT = from.depth > to.depth ? to : to.getAncestor(to.depth - from.depth); 356 357 // go upward until we find a match 358 while (currentF != currentT) { 359 currentF = currentF.parent; 360 currentT = currentT.parent; 361 } 362 363 return currentF; 364 365 } 366 367 /** Determine if a Frame is a child of another one. 368 * @param potentialAncestor supposed ancestor frame 369 * @return true if the potentialAncestor belongs to the 370 * path from instance to the root frame, excluding itself 371 */ 372 public boolean isChildOf(final Frame potentialAncestor) { 373 if (depth <= potentialAncestor.depth) { 374 return false; 375 } 376 return getAncestor(depth - potentialAncestor.depth) == potentialAncestor; 377 } 378 379 /** Get the unique root frame. 380 * @return the unique instance of the root frame 381 */ 382 public static Frame getRoot() { 383 return LazyRootHolder.INSTANCE; 384 } 385 386 /** Get a new version of the instance, frozen with respect to a reference frame. 387 * <p> 388 * Freezing a frame consist in computing its position and orientation with respect 389 * to another frame at some freezing date and fixing them so they do not depend 390 * on time anymore. This means the frozen frame is fixed with respect to the 391 * reference frame. 392 * </p> 393 * <p> 394 * One typical use of this method is to compute an inertial launch reference frame 395 * by freezing a {@link TopocentricFrame topocentric frame} at launch date 396 * with respect to an inertial frame. Another use is to freeze an equinox-related 397 * celestial frame at a reference epoch date. 398 * </p> 399 * <p> 400 * Only the frame returned by this method is frozen, the instance by itself 401 * is not affected by calling this method and still moves freely. 402 * </p> 403 * @param reference frame with respect to which the instance will be frozen 404 * @param freezingDate freezing date 405 * @param frozenName name of the frozen frame 406 * @return a frozen version of the instance 407 */ 408 public Frame getFrozenFrame(final Frame reference, final AbsoluteDate freezingDate, 409 final String frozenName) { 410 return new Frame(reference, reference.getTransformTo(this, freezingDate).freeze(), 411 frozenName, reference.isPseudoInertial()); 412 } 413 414 // We use the Initialization on demand holder idiom to store 415 // the singletons, as it is both thread-safe, efficient (no 416 // synchronization) and works with all versions of java. 417 418 /** Holder for the root frame singleton. */ 419 private static class LazyRootHolder { 420 421 /** Unique instance. */ 422 private static final Frame INSTANCE = new Frame(Predefined.GCRF.getName(), true) { 423 424 /** Serializable UID. */ 425 private static final long serialVersionUID = -2654403496396721543L; 426 427 /** Replace the instance with a data transfer object for serialization. 428 * <p> 429 * This intermediate class serializes nothing. 430 * </p> 431 * @return data transfer object that will be serialized 432 */ 433 private Object writeReplace() { 434 return new DataTransferObject(); 435 } 436 437 }; 438 439 /** Private constructor. 440 * <p>This class is a utility class, it should neither have a public 441 * nor a default constructor. This private constructor prevents 442 * the compiler from generating one automatically.</p> 443 */ 444 private LazyRootHolder() { 445 } 446 447 } 448 449 /** Internal class used only for serialization. */ 450 private static class DataTransferObject implements Serializable { 451 452 /** Serializable UID. */ 453 private static final long serialVersionUID = 4067764035816491212L; 454 455 /** Simple constructor. 456 */ 457 private DataTransferObject() { 458 } 459 460 /** Replace the deserialized data transfer object with a {@link FactoryManagedFrame}. 461 * @return replacement {@link FactoryManagedFrame} 462 */ 463 private Object readResolve() { 464 return getRoot(); 465 } 466 467 } 468 469 }