1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17 package org.orekit.orbits;
18
19 import org.hipparchus.CalculusFieldElement;
20 import org.hipparchus.Field;
21 import org.hipparchus.exception.MathIllegalStateException;
22 import org.hipparchus.util.FastMath;
23 import org.hipparchus.util.FieldSinCos;
24 import org.hipparchus.util.MathUtils;
25 import org.hipparchus.util.Precision;
26 import org.orekit.errors.OrekitMessages;
27
28
29
30
31
32
33
34 public class FieldKeplerianAnomalyUtility {
35
36
37 private static final double A;
38
39
40 private static final double B;
41
42 static {
43 final double k1 = 3 * FastMath.PI + 2;
44 final double k2 = FastMath.PI - 1;
45 final double k3 = 6 * FastMath.PI - 1;
46 A = 3 * k2 * k2 / k1;
47 B = k3 * k3 / (6 * k1);
48 }
49
50 private FieldKeplerianAnomalyUtility() {
51 }
52
53
54
55
56
57
58
59
60 public static <T extends CalculusFieldElement<T>> T ellipticMeanToTrue(final T e, final T M) {
61 final T E = ellipticMeanToEccentric(e, M);
62 final T v = ellipticEccentricToTrue(e, E);
63 return v;
64 }
65
66
67
68
69
70
71
72
73 public static <T extends CalculusFieldElement<T>> T ellipticTrueToMean(final T e, final T v) {
74 final T E = ellipticTrueToEccentric(e, v);
75 final T M = ellipticEccentricToMean(e, E);
76 return M;
77 }
78
79
80
81
82
83
84
85
86 public static <T extends CalculusFieldElement<T>> T ellipticEccentricToTrue(final T e, final T E) {
87 final T beta = e.divide(e.multiply(e).negate().add(1).sqrt().add(1));
88 final FieldSinCos<T> scE = FastMath.sinCos(E);
89 return E.add(beta.multiply(scE.sin()).divide(beta.multiply(scE.cos()).subtract(1).negate()).atan().multiply(2));
90 }
91
92
93
94
95
96
97
98
99 public static <T extends CalculusFieldElement<T>> T ellipticTrueToEccentric(final T e, final T v) {
100 final T beta = e.divide(e.multiply(e).negate().add(1).sqrt().add(1));
101 final FieldSinCos<T> scv = FastMath.sinCos(v);
102 return v.subtract((beta.multiply(scv.sin()).divide(beta.multiply(scv.cos()).add(1))).atan().multiply(2));
103 }
104
105
106
107
108
109
110
111
112
113
114
115
116
117 public static <T extends CalculusFieldElement<T>> T ellipticMeanToEccentric(final T e, final T M) {
118
119 final T reducedM = MathUtils.normalizeAngle(M, M.getField().getZero());
120
121
122 T E;
123 if (reducedM.abs().getReal() < 1.0 / 6.0) {
124 if (FastMath.abs(reducedM.getReal()) < Precision.SAFE_MIN) {
125
126
127
128
129 E = reducedM;
130 } else {
131
132 E = reducedM.add(e.multiply((reducedM.multiply(6).cbrt()).subtract(reducedM)));
133 }
134 } else {
135 final T pi = e.getPi();
136 if (reducedM.getReal() < 0) {
137 final T w = reducedM.add(pi);
138 E = reducedM.add(e.multiply(w.multiply(A).divide(w.negate().add(B)).subtract(pi).subtract(reducedM)));
139 } else {
140 final T w = reducedM.negate().add(pi);
141 E = reducedM
142 .add(e.multiply(w.multiply(A).divide(w.negate().add(B)).negate().subtract(reducedM).add(pi)));
143 }
144 }
145
146 final T e1 = e.negate().add(1);
147 final boolean noCancellationRisk = (e1.getReal() + E.getReal() * E.getReal() / 6) >= 0.1;
148
149
150
151 for (int j = 0; j < 2; ++j) {
152
153 final T f;
154 T fd;
155 final FieldSinCos<T> scE = FastMath.sinCos(E);
156 final T fdd = e.multiply(scE.sin());
157 final T fddd = e.multiply(scE.cos());
158
159 if (noCancellationRisk) {
160
161 f = (E.subtract(fdd)).subtract(reducedM);
162 fd = fddd.negate().add(1);
163 } else {
164
165 f = eMeSinE(e, E).subtract(reducedM);
166 final T s = E.multiply(0.5).sin();
167 fd = e1.add(e.multiply(s).multiply(s).multiply(2));
168 }
169 final T dee = f.multiply(fd).divide(f.multiply(fdd).multiply(0.5).subtract(fd.multiply(fd)));
170
171
172 final T w = fd.add(dee.multiply(fdd.add(dee.multiply(fddd.divide(3)))).multiply(0.5));
173 fd = fd.add(dee.multiply(fdd.add(dee.multiply(fddd).multiply(0.5))));
174 E = E.subtract(f.subtract(dee.multiply(fd.subtract(w))).divide(fd));
175
176 }
177
178
179 E = E.add(M).subtract(reducedM);
180 return E;
181 }
182
183
184
185
186
187
188
189
190
191
192
193
194 private static <T extends CalculusFieldElement<T>> T eMeSinE(final T e, final T E) {
195 T x = (e.negate().add(1)).multiply(E.sin());
196 final T mE2 = E.negate().multiply(E);
197 T term = E;
198 double d = 0;
199
200
201 for (T x0 = E.getField().getZero().add(Double.NaN); !Double.valueOf(x.getReal())
202 .equals(Double.valueOf(x0.getReal()));) {
203 d += 2;
204 term = term.multiply(mE2.divide(d * (d + 1)));
205 x0 = x;
206 x = x.subtract(term);
207 }
208 return x;
209 }
210
211
212
213
214
215
216
217
218 public static <T extends CalculusFieldElement<T>> T ellipticEccentricToMean(final T e, final T E) {
219 return E.subtract(e.multiply(E.sin()));
220 }
221
222
223
224
225
226
227
228
229 public static <T extends CalculusFieldElement<T>> T hyperbolicMeanToTrue(final T e, final T M) {
230 final T H = hyperbolicMeanToEccentric(e, M);
231 final T v = hyperbolicEccentricToTrue(e, H);
232 return v;
233 }
234
235
236
237
238
239
240
241
242 public static <T extends CalculusFieldElement<T>> T hyperbolicTrueToMean(final T e, final T v) {
243 final T H = hyperbolicTrueToEccentric(e, v);
244 final T M = hyperbolicEccentricToMean(e, H);
245 return M;
246 }
247
248
249
250
251
252
253
254
255 public static <T extends CalculusFieldElement<T>> T hyperbolicEccentricToTrue(final T e, final T H) {
256 final T s = e.add(1).divide(e.subtract(1)).sqrt();
257 final T tanH = H.multiply(0.5).tanh();
258 return s.multiply(tanH).atan().multiply(2);
259 }
260
261
262
263
264
265
266
267
268 public static <T extends CalculusFieldElement<T>> T hyperbolicTrueToEccentric(final T e, final T v) {
269 final FieldSinCos<T> scv = FastMath.sinCos(v);
270 final T sinhH = e.multiply(e).subtract(1).sqrt().multiply(scv.sin()).divide(e.multiply(scv.cos()).add(1));
271 return sinhH.asinh();
272 }
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287 public static <T extends CalculusFieldElement<T>> T hyperbolicMeanToEccentric(final T e, final T M) {
288 final Field<T> field = e.getField();
289 final T zero = field.getZero();
290 final T one = field.getOne();
291 final T two = zero.add(2.0);
292 final T three = zero.add(3.0);
293 final T half = zero.add(0.5);
294 final T onePointFive = zero.add(1.5);
295 final T fourThirds = zero.add(4.0).divide(zero.add(3.0));
296
297
298 final T L = M.divide(e);
299 final T g = e.reciprocal();
300 final T g1 = one.subtract(g);
301
302
303 T S = L;
304 if (L.isZero()) {
305 return M.getField().getZero();
306 }
307 final T cl = L.multiply(L).add(one).sqrt();
308 final T al = L.asinh();
309 final T w = g.multiply(g).multiply(al).divide(cl.multiply(cl).multiply(cl));
310 S = one.subtract(g.divide(cl));
311 S = L.add(g.multiply(al).divide(S.multiply(S).multiply(S)
312 .add(w.multiply(L).multiply(onePointFive.subtract(fourThirds.multiply(g)))).cbrt()));
313
314
315 for (int i = 0; i < 2; ++i) {
316 final T s0 = S.multiply(S);
317 final T s1 = s0.add(one);
318 final T s2 = s1.sqrt();
319 final T s3 = s1.multiply(s2);
320 final T fdd = g.multiply(S).divide(s3);
321 final T fddd = g.multiply(one.subtract(two.multiply(s0))).divide(s1.multiply(s3));
322
323 T f;
324 T fd;
325 if (s0.divide(zero.add(6.0)).add(g1).getReal() >= 0.5) {
326 f = S.subtract(g.multiply(S.asinh())).subtract(L);
327 fd = one.subtract(g.divide(s2));
328 } else {
329
330
331 final T t = S.divide(one.add(one.add(S.multiply(S)).sqrt()));
332 final T tsq = t.multiply(t);
333 T x = S.multiply(g1.add(g.multiply(tsq)));
334 T term = two.multiply(g).multiply(t);
335 T twoI1 = one;
336 T x0;
337 int j = 0;
338 do {
339 if (++j == 1000000) {
340
341 throw new MathIllegalStateException(
342 OrekitMessages.UNABLE_TO_COMPUTE_HYPERBOLIC_ECCENTRIC_ANOMALY, j);
343 }
344 twoI1 = twoI1.add(2.0);
345 term = term.multiply(tsq);
346 x0 = x;
347 x = x.subtract(term.divide(twoI1));
348 } while (x.getReal() != x0.getReal());
349 f = x.subtract(L);
350 fd = s0.divide(s2.add(one)).add(g1).divide(s2);
351 }
352 final T ds = f.multiply(fd).divide(half.multiply(f).multiply(fdd).subtract(fd.multiply(fd)));
353 final T stemp = S.add(ds);
354 if (S.getReal() == stemp.getReal()) {
355 break;
356 }
357 f = f.add(ds.multiply(fd.add(half.multiply(ds.multiply(fdd.add(ds.divide(three).multiply(fddd)))))));
358 fd = fd.add(ds.multiply(fdd.add(half.multiply(ds).multiply(fddd))));
359 S = stemp.subtract(f.divide(fd));
360 }
361
362 final T H = S.asinh();
363 return H;
364 }
365
366
367
368
369
370
371
372
373 public static <T extends CalculusFieldElement<T>> T hyperbolicEccentricToMean(final T e, final T H) {
374 return e.multiply(H.sinh()).subtract(H);
375 }
376
377 }