1 /* Copyright 2002-2022 CS GROUP 2 * Licensed to CS GROUP (CS) under one or more 3 * contributor license agreements. See the NOTICE file distributed with 4 * this work for additional information regarding copyright ownership. 5 * CS licenses this file to You under the Apache License, Version 2.0 6 * (the "License"); you may not use this file except in compliance with 7 * the License. You may obtain a copy of the License at 8 * 9 * http://www.apache.org/licenses/LICENSE-2.0 10 * 11 * Unless required by applicable law or agreed to in writing, software 12 * distributed under the License is distributed on an "AS IS" BASIS, 13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 * See the License for the specific language governing permissions and 15 * limitations under the License. 16 */ 17 package org.orekit.time; 18 19 import java.io.Serializable; 20 import java.util.Date; 21 import java.util.TimeZone; 22 23 import org.hipparchus.util.FastMath; 24 import org.hipparchus.util.MathUtils; 25 import org.hipparchus.util.MathUtils.SumAndResidual; 26 import org.orekit.annotation.DefaultDataContext; 27 import org.orekit.data.DataContext; 28 import org.orekit.errors.OrekitException; 29 import org.orekit.errors.OrekitIllegalArgumentException; 30 import org.orekit.errors.OrekitMessages; 31 import org.orekit.utils.Constants; 32 33 34 /** This class represents a specific instant in time. 35 36 * <p>Instances of this class are considered to be absolute in the sense 37 * that each one represent the occurrence of some event and can be compared 38 * to other instances or located in <em>any</em> {@link TimeScale time scale}. In 39 * other words the different locations of an event with respect to two different 40 * time scales (say {@link TAIScale TAI} and {@link UTCScale UTC} for example) are 41 * simply different perspective related to a single object. Only one 42 * <code>AbsoluteDate</code> instance is needed, both representations being available 43 * from this single instance by specifying the time scales as parameter when calling 44 * the ad-hoc methods.</p> 45 * 46 * <p>Since an instance is not bound to a specific time-scale, all methods related 47 * to the location of the date within some time scale require to provide the time 48 * scale as an argument. It is therefore possible to define a date in one time scale 49 * and to use it in another one. An example of such use is to read a date from a file 50 * in UTC and write it in another file in TAI. This can be done as follows:</p> 51 * <pre> 52 * DateTimeComponents utcComponents = readNextDate(); 53 * AbsoluteDate date = new AbsoluteDate(utcComponents, TimeScalesFactory.getUTC()); 54 * writeNextDate(date.getComponents(TimeScalesFactory.getTAI())); 55 * </pre> 56 * 57 * <p>Two complementary views are available:</p> 58 * <ul> 59 * <li><p>location view (mainly for input/output or conversions)</p> 60 * <p>locations represent the coordinate of one event with respect to a 61 * {@link TimeScale time scale}. The related methods are {@link 62 * #AbsoluteDate(DateComponents, TimeComponents, TimeScale)}, {@link 63 * #AbsoluteDate(int, int, int, int, int, double, TimeScale)}, {@link 64 * #AbsoluteDate(int, int, int, TimeScale)}, {@link #AbsoluteDate(Date, 65 * TimeScale)}, {@link #parseCCSDSCalendarSegmentedTimeCode(byte, byte[])}, 66 * {@link #toDate(TimeScale)}, {@link #toString(TimeScale) toString(timeScale)}, 67 * {@link #toString()}, and {@link #timeScalesOffset}.</p> 68 * </li> 69 * <li><p>offset view (mainly for physical computation)</p> 70 * <p>offsets represent either the flow of time between two events 71 * (two instances of the class) or durations. They are counted in seconds, 72 * are continuous and could be measured using only a virtually perfect stopwatch. 73 * The related methods are {@link #AbsoluteDate(AbsoluteDate, double)}, 74 * {@link #parseCCSDSUnsegmentedTimeCode(byte, byte, byte[], AbsoluteDate)}, 75 * {@link #parseCCSDSDaySegmentedTimeCode(byte, byte[], DateComponents)}, 76 * {@link #durationFrom(AbsoluteDate)}, {@link #compareTo(AbsoluteDate)}, {@link #equals(Object)} 77 * and {@link #hashCode()}.</p> 78 * </li> 79 * </ul> 80 * <p> 81 * A few reference epochs which are commonly used in space systems have been defined. These 82 * epochs can be used as the basis for offset computation. The supported epochs are: 83 * {@link #JULIAN_EPOCH}, {@link #MODIFIED_JULIAN_EPOCH}, {@link #FIFTIES_EPOCH}, 84 * {@link #CCSDS_EPOCH}, {@link #GALILEO_EPOCH}, {@link #GPS_EPOCH}, {@link #QZSS_EPOCH} 85 * {@link #J2000_EPOCH}, {@link #JAVA_EPOCH}. 86 * There are also two factory methods {@link #createJulianEpoch(double)} 87 * and {@link #createBesselianEpoch(double)} that can be used to compute other reference 88 * epochs like J1900.0 or B1950.0. 89 * In addition to these reference epochs, two other constants are defined for convenience: 90 * {@link #PAST_INFINITY} and {@link #FUTURE_INFINITY}, which can be used either as dummy 91 * dates when a date is not yet initialized, or for initialization of loops searching for 92 * a min or max date. 93 * </p> 94 * <p> 95 * Instances of the <code>AbsoluteDate</code> class are guaranteed to be immutable. 96 * </p> 97 * @author Luc Maisonobe 98 * @author Evan Ward 99 * @see TimeScale 100 * @see TimeStamped 101 * @see ChronologicalComparator 102 */ 103 public class AbsoluteDate 104 implements TimeStamped, TimeShiftable<AbsoluteDate>, Comparable<AbsoluteDate>, Serializable { 105 106 /** Reference epoch for julian dates: -4712-01-01T12:00:00 Terrestrial Time. 107 * <p>Both <code>java.util.Date</code> and {@link DateComponents} classes 108 * follow the astronomical conventions and consider a year 0 between 109 * years -1 and +1, hence this reference date lies in year -4712 and not 110 * in year -4713 as can be seen in other documents or programs that obey 111 * a different convention (for example the <code>convcal</code> utility).</p> 112 * 113 * <p>This constant uses the {@link DataContext#getDefault() default data context}. 114 * 115 * @see TimeScales#getJulianEpoch() 116 */ 117 @DefaultDataContext 118 public static final AbsoluteDate JULIAN_EPOCH = 119 DataContext.getDefault().getTimeScales().getJulianEpoch(); 120 121 /** Reference epoch for modified julian dates: 1858-11-17T00:00:00 Terrestrial Time. 122 * 123 * <p>This constant uses the {@link DataContext#getDefault() default data context}. 124 * 125 * @see TimeScales#getModifiedJulianEpoch() 126 */ 127 @DefaultDataContext 128 public static final AbsoluteDate MODIFIED_JULIAN_EPOCH = 129 DataContext.getDefault().getTimeScales().getModifiedJulianEpoch(); 130 131 /** Reference epoch for 1950 dates: 1950-01-01T00:00:00 Terrestrial Time. 132 * 133 * <p>This constant uses the {@link DataContext#getDefault() default data context}. 134 * 135 * @see TimeScales#getFiftiesEpoch() 136 */ 137 @DefaultDataContext 138 public static final AbsoluteDate FIFTIES_EPOCH = 139 DataContext.getDefault().getTimeScales().getFiftiesEpoch(); 140 141 /** Reference epoch for CCSDS Time Code Format (CCSDS 301.0-B-4): 142 * 1958-01-01T00:00:00 International Atomic Time (<em>not</em> UTC). 143 * 144 * <p>This constant uses the {@link DataContext#getDefault() default data context}. 145 * 146 * @see TimeScales#getCcsdsEpoch() 147 */ 148 @DefaultDataContext 149 public static final AbsoluteDate CCSDS_EPOCH = 150 DataContext.getDefault().getTimeScales().getCcsdsEpoch(); 151 152 /** Reference epoch for Galileo System Time: 1999-08-22T00:00:00 GST. 153 * 154 * <p>This constant uses the {@link DataContext#getDefault() default data context}. 155 * 156 * @see TimeScales#getGalileoEpoch() 157 */ 158 @DefaultDataContext 159 public static final AbsoluteDate GALILEO_EPOCH = 160 DataContext.getDefault().getTimeScales().getGalileoEpoch(); 161 162 /** Reference epoch for GPS weeks: 1980-01-06T00:00:00 GPS time. 163 * 164 * <p>This constant uses the {@link DataContext#getDefault() default data context}. 165 * 166 * @see TimeScales#getGpsEpoch() 167 */ 168 @DefaultDataContext 169 public static final AbsoluteDate GPS_EPOCH = 170 DataContext.getDefault().getTimeScales().getGpsEpoch(); 171 172 /** Reference epoch for QZSS weeks: 1980-01-06T00:00:00 QZSS time. 173 * 174 * <p>This constant uses the {@link DataContext#getDefault() default data context}. 175 * 176 * @see TimeScales#getQzssEpoch() 177 */ 178 @DefaultDataContext 179 public static final AbsoluteDate QZSS_EPOCH = 180 DataContext.getDefault().getTimeScales().getQzssEpoch(); 181 182 /** Reference epoch for IRNSS weeks: 1999-08-22T00:00:00 IRNSS time. 183 * 184 * <p>This constant uses the {@link DataContext#getDefault() default data context}. 185 * 186 * @see TimeScales#getIrnssEpoch() 187 */ 188 @DefaultDataContext 189 public static final AbsoluteDate IRNSS_EPOCH = 190 DataContext.getDefault().getTimeScales().getIrnssEpoch(); 191 192 /** Reference epoch for BeiDou weeks: 2006-01-01T00:00:00 UTC. 193 * 194 * <p>This constant uses the {@link DataContext#getDefault() default data context}. 195 * 196 * @see TimeScales#getBeidouEpoch() 197 */ 198 @DefaultDataContext 199 public static final AbsoluteDate BEIDOU_EPOCH = 200 DataContext.getDefault().getTimeScales().getBeidouEpoch(); 201 202 /** Reference epoch for GLONASS four-year interval number: 1996-01-01T00:00:00 GLONASS time. 203 * <p>By convention, TGLONASS = UTC + 3 hours.</p> 204 * 205 * <p>This constant uses the {@link DataContext#getDefault() default data context}. 206 * 207 * @see TimeScales#getGlonassEpoch() 208 */ 209 @DefaultDataContext 210 public static final AbsoluteDate GLONASS_EPOCH = 211 DataContext.getDefault().getTimeScales().getGlonassEpoch(); 212 213 /** J2000.0 Reference epoch: 2000-01-01T12:00:00 Terrestrial Time (<em>not</em> UTC). 214 * @see #createJulianEpoch(double) 215 * @see #createBesselianEpoch(double) 216 * 217 * <p>This constant uses the {@link DataContext#getDefault() default data context}. 218 * 219 * @see TimeScales#getJ2000Epoch() 220 */ 221 @DefaultDataContext 222 public static final AbsoluteDate J2000_EPOCH = // TODO 223 DataContext.getDefault().getTimeScales().getJ2000Epoch(); 224 225 /** Java Reference epoch: 1970-01-01T00:00:00 Universal Time Coordinate. 226 * <p> 227 * Between 1968-02-01 and 1972-01-01, UTC-TAI = 4.213 170 0s + (MJD - 39 126) x 0.002 592s. 228 * As on 1970-01-01 MJD = 40587, UTC-TAI = 8.000082s 229 * </p> 230 * 231 * <p>This constant uses the {@link DataContext#getDefault() default data context}. 232 * 233 * @see TimeScales#getJavaEpoch() 234 */ 235 @DefaultDataContext 236 public static final AbsoluteDate JAVA_EPOCH = 237 DataContext.getDefault().getTimeScales().getJavaEpoch(); 238 239 /** 240 * An arbitrary finite date. Uses when a non-null date is needed but its value doesn't 241 * matter. 242 */ 243 public static final AbsoluteDate ARBITRARY_EPOCH = new AbsoluteDate(0, 0); 244 245 /** Dummy date at infinity in the past direction. 246 * @see TimeScales#getPastInfinity() 247 */ 248 public static final AbsoluteDate PAST_INFINITY = ARBITRARY_EPOCH.shiftedBy(Double.NEGATIVE_INFINITY); 249 250 /** Dummy date at infinity in the future direction. 251 * @see TimeScales#getFutureInfinity() 252 */ 253 public static final AbsoluteDate FUTURE_INFINITY = ARBITRARY_EPOCH.shiftedBy(Double.POSITIVE_INFINITY); 254 255 /** Serializable UID. */ 256 private static final long serialVersionUID = 617061803741806846L; 257 258 /** Reference epoch in seconds from 2000-01-01T12:00:00 TAI. 259 * <p>Beware, it is not {@link #J2000_EPOCH} since it is in TAI and not in TT.</p> */ 260 private final long epoch; 261 262 /** Offset from the reference epoch in seconds. */ 263 private final double offset; 264 265 /** Create an instance with a default value ({@link #J2000_EPOCH}). 266 * 267 * <p>This constructor uses the {@link DataContext#getDefault() default data context}. 268 * 269 * @see #AbsoluteDate(DateTimeComponents, TimeScale) 270 */ 271 @DefaultDataContext 272 public AbsoluteDate() { 273 epoch = J2000_EPOCH.epoch; 274 offset = J2000_EPOCH.offset; 275 } 276 277 /** Build an instance from a location (parsed from a string) in a {@link TimeScale time scale}. 278 * <p> 279 * The supported formats for location are mainly the ones defined in ISO-8601 standard, 280 * the exact subset is explained in {@link DateTimeComponents#parseDateTime(String)}, 281 * {@link DateComponents#parseDate(String)} and {@link TimeComponents#parseTime(String)}. 282 * </p> 283 * <p> 284 * As CCSDS ASCII calendar segmented time code is a trimmed down version of ISO-8601, 285 * it is also supported by this constructor. 286 * </p> 287 * @param location location in the time scale, must be in a supported format 288 * @param timeScale time scale 289 * @exception IllegalArgumentException if location string is not in a supported format 290 */ 291 public AbsoluteDate(final String location, final TimeScale timeScale) { 292 this(DateTimeComponents.parseDateTime(location), timeScale); 293 } 294 295 /** Build an instance from a location in a {@link TimeScale time scale}. 296 * @param location location in the time scale 297 * @param timeScale time scale 298 */ 299 public AbsoluteDate(final DateTimeComponents location, final TimeScale timeScale) { 300 this(location.getDate(), location.getTime(), timeScale); 301 } 302 303 /** Build an instance from a location in a {@link TimeScale time scale}. 304 * @param date date location in the time scale 305 * @param time time location in the time scale 306 * @param timeScale time scale 307 */ 308 public AbsoluteDate(final DateComponents date, final TimeComponents time, 309 final TimeScale timeScale) { 310 311 final double seconds = time.getSecond(); 312 final double tsOffset = timeScale.offsetToTAI(date, time); 313 314 // Use 2Sum for high precision. 315 final SumAndResidual sumAndResidual = MathUtils.twoSum(seconds, tsOffset); 316 final long dl = (long) FastMath.floor(sumAndResidual.getSum()); 317 final double regularOffset = (sumAndResidual.getSum() - dl) + sumAndResidual.getResidual(); 318 319 if (regularOffset >= 0) { 320 // regular case, the offset is between 0.0 and 1.0 321 offset = regularOffset; 322 epoch = 60l * ((date.getJ2000Day() * 24l + time.getHour()) * 60l + 323 time.getMinute() - time.getMinutesFromUTC() - 720l) + dl; 324 } else { 325 // very rare case, the offset is just before a whole second 326 // we will loose some bits of accuracy when adding 1 second 327 // but this will ensure the offset remains in the [0.0; 1.0] interval 328 offset = 1.0 + regularOffset; 329 epoch = 60l * ((date.getJ2000Day() * 24l + time.getHour()) * 60l + 330 time.getMinute() - time.getMinutesFromUTC() - 720l) + dl - 1; 331 } 332 333 } 334 335 /** Build an instance from a location in a {@link TimeScale time scale}. 336 * @param year year number (may be 0 or negative for BC years) 337 * @param month month number from 1 to 12 338 * @param day day number from 1 to 31 339 * @param hour hour number from 0 to 23 340 * @param minute minute number from 0 to 59 341 * @param second second number from 0.0 to 60.0 (excluded) 342 * @param timeScale time scale 343 * @exception IllegalArgumentException if inconsistent arguments 344 * are given (parameters out of range) 345 */ 346 public AbsoluteDate(final int year, final int month, final int day, 347 final int hour, final int minute, final double second, 348 final TimeScale timeScale) throws IllegalArgumentException { 349 this(new DateComponents(year, month, day), new TimeComponents(hour, minute, second), timeScale); 350 } 351 352 /** Build an instance from a location in a {@link TimeScale time scale}. 353 * @param year year number (may be 0 or negative for BC years) 354 * @param month month enumerate 355 * @param day day number from 1 to 31 356 * @param hour hour number from 0 to 23 357 * @param minute minute number from 0 to 59 358 * @param second second number from 0.0 to 60.0 (excluded) 359 * @param timeScale time scale 360 * @exception IllegalArgumentException if inconsistent arguments 361 * are given (parameters out of range) 362 */ 363 public AbsoluteDate(final int year, final Month month, final int day, 364 final int hour, final int minute, final double second, 365 final TimeScale timeScale) throws IllegalArgumentException { 366 this(new DateComponents(year, month, day), new TimeComponents(hour, minute, second), timeScale); 367 } 368 369 /** Build an instance from a location in a {@link TimeScale time scale}. 370 * <p>The hour is set to 00:00:00.000.</p> 371 * @param date date location in the time scale 372 * @param timeScale time scale 373 * @exception IllegalArgumentException if inconsistent arguments 374 * are given (parameters out of range) 375 */ 376 public AbsoluteDate(final DateComponents date, final TimeScale timeScale) 377 throws IllegalArgumentException { 378 this(date, TimeComponents.H00, timeScale); 379 } 380 381 /** Build an instance from a location in a {@link TimeScale time scale}. 382 * <p>The hour is set to 00:00:00.000.</p> 383 * @param year year number (may be 0 or negative for BC years) 384 * @param month month number from 1 to 12 385 * @param day day number from 1 to 31 386 * @param timeScale time scale 387 * @exception IllegalArgumentException if inconsistent arguments 388 * are given (parameters out of range) 389 */ 390 public AbsoluteDate(final int year, final int month, final int day, 391 final TimeScale timeScale) throws IllegalArgumentException { 392 this(new DateComponents(year, month, day), TimeComponents.H00, timeScale); 393 } 394 395 /** Build an instance from a location in a {@link TimeScale time scale}. 396 * <p>The hour is set to 00:00:00.000.</p> 397 * @param year year number (may be 0 or negative for BC years) 398 * @param month month enumerate 399 * @param day day number from 1 to 31 400 * @param timeScale time scale 401 * @exception IllegalArgumentException if inconsistent arguments 402 * are given (parameters out of range) 403 */ 404 public AbsoluteDate(final int year, final Month month, final int day, 405 final TimeScale timeScale) throws IllegalArgumentException { 406 this(new DateComponents(year, month, day), TimeComponents.H00, timeScale); 407 } 408 409 /** Build an instance from a location in a {@link TimeScale time scale}. 410 * @param location location in the time scale 411 * @param timeScale time scale 412 */ 413 public AbsoluteDate(final Date location, final TimeScale timeScale) { 414 this(new DateComponents(DateComponents.JAVA_EPOCH, 415 (int) (location.getTime() / 86400000l)), 416 millisToTimeComponents((int) (location.getTime() % 86400000l)), 417 timeScale); 418 } 419 420 /** Build an instance from an elapsed duration since to another instant. 421 * <p>It is important to note that the elapsed duration is <em>not</em> 422 * the difference between two readings on a time scale. As an example, 423 * the duration between the two instants leading to the readings 424 * 2005-12-31T23:59:59 and 2006-01-01T00:00:00 in the {@link UTCScale UTC} 425 * time scale is <em>not</em> 1 second, but a stop watch would have measured 426 * an elapsed duration of 2 seconds between these two instances because a leap 427 * second was introduced at the end of 2005 in this time scale.</p> 428 * <p>This constructor is the reverse of the {@link #durationFrom(AbsoluteDate)} 429 * method.</p> 430 * @param since start instant of the measured duration 431 * @param elapsedDuration physically elapsed duration from the <code>since</code> 432 * instant, as measured in a regular time scale 433 * @see #durationFrom(AbsoluteDate) 434 */ 435 public AbsoluteDate(final AbsoluteDate since, final double elapsedDuration) { 436 // Use 2Sum for high precision. 437 final SumAndResidual sumAndResidual = MathUtils.twoSum(since.offset, elapsedDuration); 438 if (Double.isInfinite(sumAndResidual.getSum())) { 439 offset = sumAndResidual.getSum(); 440 epoch = (sumAndResidual.getSum() < 0) ? Long.MIN_VALUE : Long.MAX_VALUE; 441 } else { 442 final long dl = (long) FastMath.floor(sumAndResidual.getSum()); 443 final double regularOffset = (sumAndResidual.getSum() - dl) + sumAndResidual.getResidual(); 444 if (regularOffset >= 0) { 445 // regular case, the offset is between 0.0 and 1.0 446 offset = regularOffset; 447 epoch = since.epoch + dl; 448 } else { 449 // very rare case, the offset is just before a whole second 450 // we will loose some bits of accuracy when adding 1 second 451 // but this will ensure the offset remains in the [0.0; 1.0] interval 452 offset = 1.0 + regularOffset; 453 epoch = since.epoch + dl - 1; 454 } 455 } 456 } 457 458 /** Build an instance from an apparent clock offset with respect to another 459 * instant <em>in the perspective of a specific {@link TimeScale time scale}</em>. 460 * <p>It is important to note that the apparent clock offset <em>is</em> the 461 * difference between two readings on a time scale and <em>not</em> an elapsed 462 * duration. As an example, the apparent clock offset between the two instants 463 * leading to the readings 2005-12-31T23:59:59 and 2006-01-01T00:00:00 in the 464 * {@link UTCScale UTC} time scale is 1 second, but the elapsed duration is 2 465 * seconds because a leap second has been introduced at the end of 2005 in this 466 * time scale.</p> 467 * <p>This constructor is the reverse of the {@link #offsetFrom(AbsoluteDate, 468 * TimeScale)} method.</p> 469 * @param reference reference instant 470 * @param apparentOffset apparent clock offset from the reference instant 471 * (difference between two readings in the specified time scale) 472 * @param timeScale time scale with respect to which the offset is defined 473 * @see #offsetFrom(AbsoluteDate, TimeScale) 474 */ 475 public AbsoluteDate(final AbsoluteDate reference, final double apparentOffset, 476 final TimeScale timeScale) { 477 this(new DateTimeComponents(reference.getComponents(timeScale), apparentOffset), 478 timeScale); 479 } 480 481 /** Build a date from its internal components. 482 * <p> 483 * This method is reserved for internal used (for example by {@link FieldAbsoluteDate}). 484 * </p> 485 * @param epoch reference epoch in seconds from 2000-01-01T12:00:00 TAI. 486 * (beware, it is not {@link #J2000_EPOCH} since it is in TAI and not in TT) 487 * @param offset offset from the reference epoch in seconds (must be 488 * between 0.0 included and 1.0 excluded) 489 * @since 9.0 490 */ 491 AbsoluteDate(final long epoch, final double offset) { 492 this.epoch = epoch; 493 this.offset = offset; 494 } 495 496 /** Extract time components from a number of milliseconds within the day. 497 * @param millisInDay number of milliseconds within the day 498 * @return time components 499 */ 500 private static TimeComponents millisToTimeComponents(final int millisInDay) { 501 return new TimeComponents(millisInDay / 1000, 0.001 * (millisInDay % 1000)); 502 } 503 504 /** Get the reference epoch in seconds from 2000-01-01T12:00:00 TAI. 505 * <p> 506 * This method is reserved for internal used (for example by {@link FieldAbsoluteDate}). 507 * </p> 508 * <p> 509 * Beware, it is not {@link #J2000_EPOCH} since it is in TAI and not in TT. 510 * </p> 511 * @return reference epoch in seconds from 2000-01-01T12:00:00 TAI 512 * @since 9.0 513 */ 514 long getEpoch() { 515 return epoch; 516 } 517 518 /** Get the offset from the reference epoch in seconds. 519 * <p> 520 * This method is reserved for internal used (for example by {@link FieldAbsoluteDate}). 521 * </p> 522 * @return offset from the reference epoch in seconds 523 * @since 9.0 524 */ 525 double getOffset() { 526 return offset; 527 } 528 529 /** Build an instance from a CCSDS Unsegmented Time Code (CUC). 530 * <p> 531 * CCSDS Unsegmented Time Code is defined in the blue book: 532 * CCSDS Time Code Format (CCSDS 301.0-B-4) published in November 2010 533 * </p> 534 * <p> 535 * If the date to be parsed is formatted using version 3 of the standard 536 * (CCSDS 301.0-B-3 published in 2002) or if the extension of the preamble 537 * field introduced in version 4 of the standard is not used, then the 538 * {@code preambleField2} parameter can be set to 0. 539 * </p> 540 * 541 * <p>This method uses the {@link DataContext#getDefault() default data context} if 542 * the CCSDS epoch is used. 543 * 544 * @param preambleField1 first byte of the field specifying the format, often 545 * not transmitted in data interfaces, as it is constant for a given data interface 546 * @param preambleField2 second byte of the field specifying the format 547 * (added in revision 4 of the CCSDS standard in 2010), often not transmitted in data 548 * interfaces, as it is constant for a given data interface (value ignored if presence 549 * not signaled in {@code preambleField1}) 550 * @param timeField byte array containing the time code 551 * @param agencyDefinedEpoch reference epoch, ignored if the preamble field 552 * specifies the {@link #CCSDS_EPOCH CCSDS reference epoch} is used (and hence 553 * may be null in this case) 554 * @return an instance corresponding to the specified date 555 * @see #parseCCSDSUnsegmentedTimeCode(byte, byte, byte[], AbsoluteDate, AbsoluteDate) 556 */ 557 @DefaultDataContext 558 public static AbsoluteDate parseCCSDSUnsegmentedTimeCode(final byte preambleField1, 559 final byte preambleField2, 560 final byte[] timeField, 561 final AbsoluteDate agencyDefinedEpoch) { 562 return parseCCSDSUnsegmentedTimeCode(preambleField1, preambleField2, timeField, 563 agencyDefinedEpoch, 564 DataContext.getDefault().getTimeScales().getCcsdsEpoch()); 565 } 566 567 /** 568 * Build an instance from a CCSDS Unsegmented Time Code (CUC). 569 * <p> 570 * CCSDS Unsegmented Time Code is defined in the blue book: CCSDS Time Code Format 571 * (CCSDS 301.0-B-4) published in November 2010 572 * </p> 573 * <p> 574 * If the date to be parsed is formatted using version 3 of the standard (CCSDS 575 * 301.0-B-3 published in 2002) or if the extension of the preamble field introduced 576 * in version 4 of the standard is not used, then the {@code preambleField2} parameter 577 * can be set to 0. 578 * </p> 579 * 580 * @param preambleField1 first byte of the field specifying the format, often not 581 * transmitted in data interfaces, as it is constant for a 582 * given data interface 583 * @param preambleField2 second byte of the field specifying the format (added in 584 * revision 4 of the CCSDS standard in 2010), often not 585 * transmitted in data interfaces, as it is constant for a 586 * given data interface (value ignored if presence not 587 * signaled in {@code preambleField1}) 588 * @param timeField byte array containing the time code 589 * @param agencyDefinedEpoch reference epoch, ignored if the preamble field specifies 590 * the {@link #CCSDS_EPOCH CCSDS reference epoch} is used 591 * (and hence may be null in this case) 592 * @param ccsdsEpoch reference epoch, ignored if the preamble field specifies 593 * the agency epoch is used. 594 * @return an instance corresponding to the specified date 595 * @since 10.1 596 */ 597 public static AbsoluteDate parseCCSDSUnsegmentedTimeCode( 598 final byte preambleField1, 599 final byte preambleField2, 600 final byte[] timeField, 601 final AbsoluteDate agencyDefinedEpoch, 602 final AbsoluteDate ccsdsEpoch) { 603 604 // time code identification and reference epoch 605 final AbsoluteDate epoch; 606 switch (preambleField1 & 0x70) { 607 case 0x10: 608 // the reference epoch is CCSDS epoch 1958-01-01T00:00:00 TAI 609 epoch = ccsdsEpoch; 610 break; 611 case 0x20: 612 // the reference epoch is agency defined 613 if (agencyDefinedEpoch == null) { 614 throw new OrekitException(OrekitMessages.CCSDS_DATE_MISSING_AGENCY_EPOCH); 615 } 616 epoch = agencyDefinedEpoch; 617 break; 618 default : 619 throw new OrekitException(OrekitMessages.CCSDS_DATE_INVALID_PREAMBLE_FIELD, 620 formatByte(preambleField1)); 621 } 622 623 // time field lengths 624 int coarseTimeLength = 1 + ((preambleField1 & 0x0C) >>> 2); 625 int fineTimeLength = preambleField1 & 0x03; 626 627 if ((preambleField1 & 0x80) != 0x0) { 628 // there is an additional octet in preamble field 629 coarseTimeLength += (preambleField2 & 0x60) >>> 5; 630 fineTimeLength += (preambleField2 & 0x1C) >>> 2; 631 } 632 633 if (timeField.length != coarseTimeLength + fineTimeLength) { 634 throw new OrekitException(OrekitMessages.CCSDS_DATE_INVALID_LENGTH_TIME_FIELD, 635 timeField.length, coarseTimeLength + fineTimeLength); 636 } 637 638 double seconds = 0; 639 for (int i = 0; i < coarseTimeLength; ++i) { 640 seconds = seconds * 256 + toUnsigned(timeField[i]); 641 } 642 double subseconds = 0; 643 for (int i = timeField.length - 1; i >= coarseTimeLength; --i) { 644 subseconds = (subseconds + toUnsigned(timeField[i])) / 256; 645 } 646 647 return new AbsoluteDate(epoch, seconds).shiftedBy(subseconds); 648 649 } 650 651 /** Build an instance from a CCSDS Day Segmented Time Code (CDS). 652 * <p> 653 * CCSDS Day Segmented Time Code is defined in the blue book: 654 * CCSDS Time Code Format (CCSDS 301.0-B-4) published in November 2010 655 * </p> 656 * 657 * <p>This method uses the {@link DataContext#getDefault() default data context}. 658 * 659 * @param preambleField field specifying the format, often not transmitted in 660 * data interfaces, as it is constant for a given data interface 661 * @param timeField byte array containing the time code 662 * @param agencyDefinedEpoch reference epoch, ignored if the preamble field 663 * specifies the {@link #CCSDS_EPOCH CCSDS reference epoch} is used (and hence 664 * may be null in this case) 665 * @return an instance corresponding to the specified date 666 * @see #parseCCSDSDaySegmentedTimeCode(byte, byte[], DateComponents, TimeScale) 667 */ 668 @DefaultDataContext 669 public static AbsoluteDate parseCCSDSDaySegmentedTimeCode(final byte preambleField, final byte[] timeField, 670 final DateComponents agencyDefinedEpoch) { 671 return parseCCSDSDaySegmentedTimeCode(preambleField, timeField, 672 agencyDefinedEpoch, DataContext.getDefault().getTimeScales().getUTC()); 673 } 674 675 /** Build an instance from a CCSDS Day Segmented Time Code (CDS). 676 * <p> 677 * CCSDS Day Segmented Time Code is defined in the blue book: 678 * CCSDS Time Code Format (CCSDS 301.0-B-4) published in November 2010 679 * </p> 680 * @param preambleField field specifying the format, often not transmitted in 681 * data interfaces, as it is constant for a given data interface 682 * @param timeField byte array containing the time code 683 * @param agencyDefinedEpoch reference epoch, ignored if the preamble field 684 * specifies the {@link #CCSDS_EPOCH CCSDS reference epoch} is used (and hence 685 * may be null in this case) 686 * @param utc time scale used to compute date and time components. 687 * @return an instance corresponding to the specified date 688 * @since 10.1 689 */ 690 public static AbsoluteDate parseCCSDSDaySegmentedTimeCode( 691 final byte preambleField, 692 final byte[] timeField, 693 final DateComponents agencyDefinedEpoch, 694 final TimeScale utc) { 695 696 // time code identification 697 if ((preambleField & 0xF0) != 0x40) { 698 throw new OrekitException(OrekitMessages.CCSDS_DATE_INVALID_PREAMBLE_FIELD, 699 formatByte(preambleField)); 700 } 701 702 // reference epoch 703 final DateComponents epoch; 704 if ((preambleField & 0x08) == 0x00) { 705 // the reference epoch is CCSDS epoch 1958-01-01T00:00:00 TAI 706 epoch = DateComponents.CCSDS_EPOCH; 707 } else { 708 // the reference epoch is agency defined 709 if (agencyDefinedEpoch == null) { 710 throw new OrekitException(OrekitMessages.CCSDS_DATE_MISSING_AGENCY_EPOCH); 711 } 712 epoch = agencyDefinedEpoch; 713 } 714 715 // time field lengths 716 final int daySegmentLength = ((preambleField & 0x04) == 0x0) ? 2 : 3; 717 final int subMillisecondLength = (preambleField & 0x03) << 1; 718 if (subMillisecondLength == 6) { 719 throw new OrekitException(OrekitMessages.CCSDS_DATE_INVALID_PREAMBLE_FIELD, 720 formatByte(preambleField)); 721 } 722 if (timeField.length != daySegmentLength + 4 + subMillisecondLength) { 723 throw new OrekitException(OrekitMessages.CCSDS_DATE_INVALID_LENGTH_TIME_FIELD, 724 timeField.length, daySegmentLength + 4 + subMillisecondLength); 725 } 726 727 728 int i = 0; 729 int day = 0; 730 while (i < daySegmentLength) { 731 day = day * 256 + toUnsigned(timeField[i++]); 732 } 733 734 long milliInDay = 0l; 735 while (i < daySegmentLength + 4) { 736 milliInDay = milliInDay * 256 + toUnsigned(timeField[i++]); 737 } 738 final int milli = (int) (milliInDay % 1000l); 739 final int seconds = (int) ((milliInDay - milli) / 1000l); 740 741 double subMilli = 0; 742 double divisor = 1; 743 while (i < timeField.length) { 744 subMilli = subMilli * 256 + toUnsigned(timeField[i++]); 745 divisor *= 1000; 746 } 747 748 final DateComponents date = new DateComponents(epoch, day); 749 final TimeComponents time = new TimeComponents(seconds); 750 return new AbsoluteDate(date, time, utc).shiftedBy(milli * 1.0e-3 + subMilli / divisor); 751 752 } 753 754 /** Build an instance from a CCSDS Calendar Segmented Time Code (CCS). 755 * <p> 756 * CCSDS Calendar Segmented Time Code is defined in the blue book: 757 * CCSDS Time Code Format (CCSDS 301.0-B-4) published in November 2010 758 * </p> 759 * 760 * <p>This method uses the {@link DataContext#getDefault() default data context}. 761 * 762 * @param preambleField field specifying the format, often not transmitted in 763 * data interfaces, as it is constant for a given data interface 764 * @param timeField byte array containing the time code 765 * @return an instance corresponding to the specified date 766 * @see #parseCCSDSCalendarSegmentedTimeCode(byte, byte[], TimeScale) 767 */ 768 @DefaultDataContext 769 public static AbsoluteDate parseCCSDSCalendarSegmentedTimeCode(final byte preambleField, final byte[] timeField) { 770 return parseCCSDSCalendarSegmentedTimeCode(preambleField, timeField, 771 DataContext.getDefault().getTimeScales().getUTC()); 772 } 773 774 /** Build an instance from a CCSDS Calendar Segmented Time Code (CCS). 775 * <p> 776 * CCSDS Calendar Segmented Time Code is defined in the blue book: 777 * CCSDS Time Code Format (CCSDS 301.0-B-4) published in November 2010 778 * </p> 779 * @param preambleField field specifying the format, often not transmitted in 780 * data interfaces, as it is constant for a given data interface 781 * @param timeField byte array containing the time code 782 * @param utc time scale used to compute date and time components. 783 * @return an instance corresponding to the specified date 784 * @since 10.1 785 */ 786 public static AbsoluteDate parseCCSDSCalendarSegmentedTimeCode( 787 final byte preambleField, 788 final byte[] timeField, 789 final TimeScale utc) { 790 791 // time code identification 792 if ((preambleField & 0xF0) != 0x50) { 793 throw new OrekitException(OrekitMessages.CCSDS_DATE_INVALID_PREAMBLE_FIELD, 794 formatByte(preambleField)); 795 } 796 797 // time field length 798 final int length = 7 + (preambleField & 0x07); 799 if (length == 14) { 800 throw new OrekitException(OrekitMessages.CCSDS_DATE_INVALID_PREAMBLE_FIELD, 801 formatByte(preambleField)); 802 } 803 if (timeField.length != length) { 804 throw new OrekitException(OrekitMessages.CCSDS_DATE_INVALID_LENGTH_TIME_FIELD, 805 timeField.length, length); 806 } 807 808 // date part in the first four bytes 809 final DateComponents date; 810 if ((preambleField & 0x08) == 0x00) { 811 // month of year and day of month variation 812 date = new DateComponents(toUnsigned(timeField[0]) * 256 + toUnsigned(timeField[1]), 813 toUnsigned(timeField[2]), 814 toUnsigned(timeField[3])); 815 } else { 816 // day of year variation 817 date = new DateComponents(toUnsigned(timeField[0]) * 256 + toUnsigned(timeField[1]), 818 toUnsigned(timeField[2]) * 256 + toUnsigned(timeField[3])); 819 } 820 821 // time part from bytes 5 to last (between 7 and 13 depending on precision) 822 final TimeComponents time = new TimeComponents(toUnsigned(timeField[4]), 823 toUnsigned(timeField[5]), 824 toUnsigned(timeField[6])); 825 double subSecond = 0; 826 double divisor = 1; 827 for (int i = 7; i < length; ++i) { 828 subSecond = subSecond * 100 + toUnsigned(timeField[i]); 829 divisor *= 100; 830 } 831 832 return new AbsoluteDate(date, time, utc).shiftedBy(subSecond / divisor); 833 834 } 835 836 /** Decode a signed byte as an unsigned int value. 837 * @param b byte to decode 838 * @return an unsigned int value 839 */ 840 private static int toUnsigned(final byte b) { 841 final int i = (int) b; 842 return (i < 0) ? 256 + i : i; 843 } 844 845 /** Format a byte as an hex string for error messages. 846 * @param data byte to format 847 * @return a formatted string 848 */ 849 private static String formatByte(final byte data) { 850 return "0x" + Integer.toHexString(data).toUpperCase(); 851 } 852 853 /** Build an instance corresponding to a Julian Day date. 854 * @param jd Julian day 855 * @param secondsSinceNoon seconds in the Julian day 856 * (BEWARE, Julian days start at noon, so 0.0 is noon) 857 * @param timeScale time scale in which the seconds in day are defined 858 * @return a new instant 859 */ 860 public static AbsoluteDate createJDDate(final int jd, final double secondsSinceNoon, 861 final TimeScale timeScale) { 862 return new AbsoluteDate(new DateComponents(DateComponents.JULIAN_EPOCH, jd), 863 TimeComponents.H12, timeScale).shiftedBy(secondsSinceNoon); 864 } 865 866 /** Build an instance corresponding to a Modified Julian Day date. 867 * @param mjd modified Julian day 868 * @param secondsInDay seconds in the day 869 * @param timeScale time scale in which the seconds in day are defined 870 * @return a new instant 871 * @exception OrekitIllegalArgumentException if seconds number is out of range 872 */ 873 public static AbsoluteDate createMJDDate(final int mjd, final double secondsInDay, 874 final TimeScale timeScale) 875 throws OrekitIllegalArgumentException { 876 final DateComponents dc = new DateComponents(DateComponents.MODIFIED_JULIAN_EPOCH, mjd); 877 final TimeComponents tc; 878 if (secondsInDay >= Constants.JULIAN_DAY) { 879 // check we are really allowed to use this number of seconds 880 final int secondsA = 86399; // 23:59:59, i.e. 59s in the last minute of the day 881 final double secondsB = secondsInDay - secondsA; 882 final TimeComponents safeTC = new TimeComponents(secondsA, 0.0); 883 final AbsoluteDate safeDate = new AbsoluteDate(dc, safeTC, timeScale); 884 if (timeScale.minuteDuration(safeDate) > 59 + secondsB) { 885 // we are within the last minute of the day, the number of seconds is OK 886 return safeDate.shiftedBy(secondsB); 887 } else { 888 // let TimeComponents trigger an OrekitIllegalArgumentException 889 // for the wrong number of seconds 890 tc = new TimeComponents(secondsA, secondsB); 891 } 892 } else { 893 tc = new TimeComponents(secondsInDay); 894 } 895 896 // create the date 897 return new AbsoluteDate(dc, tc, timeScale); 898 899 } 900 901 902 /** Build an instance corresponding to a Julian Epoch (JE). 903 * <p>According to Lieske paper: <a 904 * href="http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?1979A%26A....73..282L&defaultprint=YES&filetype=.pdf."> 905 * Precession Matrix Based on IAU (1976) System of Astronomical Constants</a>, Astronomy and Astrophysics, 906 * vol. 73, no. 3, Mar. 1979, p. 282-284, Julian Epoch is related to Julian Ephemeris Date as:</p> 907 * <pre> 908 * JE = 2000.0 + (JED - 2451545.0) / 365.25 909 * </pre> 910 * <p> 911 * This method reverts the formula above and computes an {@code AbsoluteDate} from the Julian Epoch. 912 * </p> 913 * 914 * <p>This method uses the {@link DataContext#getDefault() default data context}. 915 * 916 * @param julianEpoch Julian epoch, like 2000.0 for defining the classical reference J2000.0 917 * @return a new instant 918 * @see #J2000_EPOCH 919 * @see #createBesselianEpoch(double) 920 * @see TimeScales#createJulianEpoch(double) 921 */ 922 @DefaultDataContext 923 public static AbsoluteDate createJulianEpoch(final double julianEpoch) { 924 return DataContext.getDefault().getTimeScales().createJulianEpoch(julianEpoch); 925 } 926 927 /** Build an instance corresponding to a Besselian Epoch (BE). 928 * <p>According to Lieske paper: <a 929 * href="http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?1979A%26A....73..282L&defaultprint=YES&filetype=.pdf."> 930 * Precession Matrix Based on IAU (1976) System of Astronomical Constants</a>, Astronomy and Astrophysics, 931 * vol. 73, no. 3, Mar. 1979, p. 282-284, Besselian Epoch is related to Julian Ephemeris Date as:</p> 932 * <pre> 933 * BE = 1900.0 + (JED - 2415020.31352) / 365.242198781 934 * </pre> 935 * <p> 936 * This method reverts the formula above and computes an {@code AbsoluteDate} from the Besselian Epoch. 937 * </p> 938 * 939 * <p>This method uses the {@link DataContext#getDefault() default data context}. 940 * 941 * @param besselianEpoch Besselian epoch, like 1950 for defining the classical reference B1950.0 942 * @return a new instant 943 * @see #createJulianEpoch(double) 944 * @see TimeScales#createBesselianEpoch(double) 945 */ 946 @DefaultDataContext 947 public static AbsoluteDate createBesselianEpoch(final double besselianEpoch) { 948 return DataContext.getDefault().getTimeScales() 949 .createBesselianEpoch(besselianEpoch); 950 } 951 952 /** Get a time-shifted date. 953 * <p> 954 * Calling this method is equivalent to call <code>new AbsoluteDate(this, dt)</code>. 955 * </p> 956 * @param dt time shift in seconds 957 * @return a new date, shifted with respect to instance (which is immutable) 958 * @see org.orekit.utils.PVCoordinates#shiftedBy(double) 959 * @see org.orekit.attitudes.Attitude#shiftedBy(double) 960 * @see org.orekit.orbits.Orbit#shiftedBy(double) 961 * @see org.orekit.propagation.SpacecraftState#shiftedBy(double) 962 */ 963 public AbsoluteDate shiftedBy(final double dt) { 964 return new AbsoluteDate(this, dt); 965 } 966 967 /** Compute the physically elapsed duration between two instants. 968 * <p>The returned duration is the number of seconds physically 969 * elapsed between the two instants, measured in a regular time 970 * scale with respect to surface of the Earth (i.e either the {@link 971 * TAIScale TAI scale}, the {@link TTScale TT scale} or the {@link 972 * GPSScale GPS scale}). It is the only method that gives a 973 * duration with a physical meaning.</p> 974 * <p>This method gives the same result (with less computation) 975 * as calling {@link #offsetFrom(AbsoluteDate, TimeScale)} 976 * with a second argument set to one of the regular scales cited 977 * above.</p> 978 * <p>This method is the reverse of the {@link #AbsoluteDate(AbsoluteDate, 979 * double)} constructor.</p> 980 * @param instant instant to subtract from the instance 981 * @return offset in seconds between the two instants (positive 982 * if the instance is posterior to the argument) 983 * @see #offsetFrom(AbsoluteDate, TimeScale) 984 * @see #AbsoluteDate(AbsoluteDate, double) 985 */ 986 public double durationFrom(final AbsoluteDate instant) { 987 return (epoch - instant.epoch) + (offset - instant.offset); 988 } 989 990 /** Compute the apparent clock offset between two instant <em>in the 991 * perspective of a specific {@link TimeScale time scale}</em>. 992 * <p>The offset is the number of seconds counted in the given 993 * time scale between the locations of the two instants, with 994 * all time scale irregularities removed (i.e. considering all 995 * days are exactly 86400 seconds long). This method will give 996 * a result that may not have a physical meaning if the time scale 997 * is irregular. For example since a leap second was introduced at 998 * the end of 2005, the apparent offset between 2005-12-31T23:59:59 999 * and 2006-01-01T00:00:00 is 1 second, but the physical duration 1000 * of the corresponding time interval as returned by the {@link 1001 * #durationFrom(AbsoluteDate)} method is 2 seconds.</p> 1002 * <p>This method is the reverse of the {@link #AbsoluteDate(AbsoluteDate, 1003 * double, TimeScale)} constructor.</p> 1004 * @param instant instant to subtract from the instance 1005 * @param timeScale time scale with respect to which the offset should 1006 * be computed 1007 * @return apparent clock offset in seconds between the two instants 1008 * (positive if the instance is posterior to the argument) 1009 * @see #durationFrom(AbsoluteDate) 1010 * @see #AbsoluteDate(AbsoluteDate, double, TimeScale) 1011 */ 1012 public double offsetFrom(final AbsoluteDate instant, final TimeScale timeScale) { 1013 final long elapsedDurationA = epoch - instant.epoch; 1014 final double elapsedDurationB = (offset + timeScale.offsetFromTAI(this)) - 1015 (instant.offset + timeScale.offsetFromTAI(instant)); 1016 return elapsedDurationA + elapsedDurationB; 1017 } 1018 1019 /** Compute the offset between two time scales at the current instant. 1020 * <p>The offset is defined as <i>l₁-l₂</i> 1021 * where <i>l₁</i> is the location of the instant in 1022 * the <code>scale1</code> time scale and <i>l₂</i> is the 1023 * location of the instant in the <code>scale2</code> time scale.</p> 1024 * @param scale1 first time scale 1025 * @param scale2 second time scale 1026 * @return offset in seconds between the two time scales at the 1027 * current instant 1028 */ 1029 public double timeScalesOffset(final TimeScale scale1, final TimeScale scale2) { 1030 return scale1.offsetFromTAI(this) - scale2.offsetFromTAI(this); 1031 } 1032 1033 /** Convert the instance to a Java {@link java.util.Date Date}. 1034 * <p>Conversion to the Date class induces a loss of precision because 1035 * the Date class does not provide sub-millisecond information. Java Dates 1036 * are considered to be locations in some times scales.</p> 1037 * @param timeScale time scale to use 1038 * @return a {@link java.util.Date Date} instance representing the location 1039 * of the instant in the time scale 1040 */ 1041 public Date toDate(final TimeScale timeScale) { 1042 final double time = epoch + (offset + timeScale.offsetFromTAI(this)); 1043 return new Date(FastMath.round((time + 10957.5 * 86400.0) * 1000)); 1044 } 1045 1046 /** Split the instance into date/time components. 1047 * @param timeScale time scale to use 1048 * @return date/time components 1049 */ 1050 public DateTimeComponents getComponents(final TimeScale timeScale) { 1051 1052 if (Double.isInfinite(offset)) { 1053 // special handling for past and future infinity 1054 if (offset < 0) { 1055 return new DateTimeComponents(DateComponents.MIN_EPOCH, TimeComponents.H00); 1056 } else { 1057 return new DateTimeComponents(DateComponents.MAX_EPOCH, 1058 new TimeComponents(23, 59, 59.999)); 1059 } 1060 } 1061 1062 // Compute offset from 2000-01-01T00:00:00 in specified time scale. 1063 // Use 2Sum for high precision. 1064 final double taiOffset = timeScale.offsetFromTAI(this); 1065 final SumAndResidual sumAndResidual = MathUtils.twoSum(offset, taiOffset); 1066 1067 // split date and time 1068 final long carry = (long) FastMath.floor(sumAndResidual.getSum()); 1069 double offset2000B = (sumAndResidual.getSum() - carry) + sumAndResidual.getResidual(); 1070 long offset2000A = epoch + carry + 43200l; 1071 if (offset2000B < 0) { 1072 offset2000A -= 1; 1073 offset2000B += 1; 1074 } 1075 long time = offset2000A % 86400l; 1076 if (time < 0l) { 1077 time += 86400l; 1078 } 1079 final int date = (int) ((offset2000A - time) / 86400l); 1080 1081 // extract calendar elements 1082 final DateComponents dateComponents = new DateComponents(DateComponents.J2000_EPOCH, date); 1083 1084 // extract time element, accounting for leap seconds 1085 final double leap = timeScale.insideLeap(this) ? timeScale.getLeap(this) : 0; 1086 final int minuteDuration = timeScale.minuteDuration(this); 1087 final TimeComponents timeComponents = 1088 TimeComponents.fromSeconds((int) time, offset2000B, leap, minuteDuration); 1089 1090 // build the components 1091 return new DateTimeComponents(dateComponents, timeComponents); 1092 1093 } 1094 1095 /** Split the instance into date/time components for a local time. 1096 * 1097 * <p>This method uses the {@link DataContext#getDefault() default data context}. 1098 * 1099 * @param minutesFromUTC offset in <em>minutes</em> from UTC (positive Eastwards UTC, 1100 * negative Westward UTC) 1101 * @return date/time components 1102 * @since 7.2 1103 * @see #getComponents(int, TimeScale) 1104 */ 1105 @DefaultDataContext 1106 public DateTimeComponents getComponents(final int minutesFromUTC) { 1107 return getComponents(minutesFromUTC, 1108 DataContext.getDefault().getTimeScales().getUTC()); 1109 } 1110 1111 /** 1112 * Split the instance into date/time components for a local time. 1113 * 1114 * @param minutesFromUTC offset in <em>minutes</em> from UTC (positive Eastwards UTC, 1115 * negative Westward UTC) 1116 * @param utc time scale used to compute date and time components. 1117 * @return date/time components 1118 * @since 10.1 1119 */ 1120 public DateTimeComponents getComponents(final int minutesFromUTC, 1121 final TimeScale utc) { 1122 1123 final DateTimeComponents utcComponents = getComponents(utc); 1124 1125 // shift the date according to UTC offset, but WITHOUT touching the seconds, 1126 // as they may exceed 60.0 during a leap seconds introduction, 1127 // and we want to preserve these special cases 1128 final double seconds = utcComponents.getTime().getSecond(); 1129 1130 int minute = utcComponents.getTime().getMinute() + minutesFromUTC; 1131 final int hourShift; 1132 if (minute < 0) { 1133 hourShift = (minute - 59) / 60; 1134 } else if (minute > 59) { 1135 hourShift = minute / 60; 1136 } else { 1137 hourShift = 0; 1138 } 1139 minute -= 60 * hourShift; 1140 1141 int hour = utcComponents.getTime().getHour() + hourShift; 1142 final int dayShift; 1143 if (hour < 0) { 1144 dayShift = (hour - 23) / 24; 1145 } else if (hour > 23) { 1146 dayShift = hour / 24; 1147 } else { 1148 dayShift = 0; 1149 } 1150 hour -= 24 * dayShift; 1151 1152 return new DateTimeComponents(new DateComponents(utcComponents.getDate(), dayShift), 1153 new TimeComponents(hour, minute, seconds, minutesFromUTC)); 1154 1155 } 1156 1157 /** Split the instance into date/time components for a time zone. 1158 * 1159 * <p>This method uses the {@link DataContext#getDefault() default data context}. 1160 * 1161 * @param timeZone time zone 1162 * @return date/time components 1163 * @since 7.2 1164 * @see #getComponents(TimeZone, TimeScale) 1165 */ 1166 @DefaultDataContext 1167 public DateTimeComponents getComponents(final TimeZone timeZone) { 1168 return getComponents(timeZone, DataContext.getDefault().getTimeScales().getUTC()); 1169 } 1170 1171 /** 1172 * Split the instance into date/time components for a time zone. 1173 * 1174 * @param timeZone time zone 1175 * @param utc time scale used to computed date and time components. 1176 * @return date/time components 1177 * @since 10.1 1178 */ 1179 public DateTimeComponents getComponents(final TimeZone timeZone, 1180 final TimeScale utc) { 1181 final AbsoluteDate javaEpoch = new AbsoluteDate(DateComponents.JAVA_EPOCH, utc); 1182 final long milliseconds = FastMath.round(1000 * offsetFrom(javaEpoch, utc)); 1183 return getComponents(timeZone.getOffset(milliseconds) / 60000, utc); 1184 } 1185 1186 /** Compare the instance with another date. 1187 * @param date other date to compare the instance to 1188 * @return a negative integer, zero, or a positive integer as this date 1189 * is before, simultaneous, or after the specified date. 1190 */ 1191 public int compareTo(final AbsoluteDate date) { 1192 final double duration = durationFrom(date); 1193 if (!Double.isNaN(duration)) { 1194 return Double.compare(duration, 0.0); 1195 } 1196 // both dates are infinity or one is NaN or both are NaN 1197 return Double.compare(offset, date.offset); 1198 } 1199 1200 /** {@inheritDoc} */ 1201 public AbsoluteDate getDate() { 1202 return this; 1203 } 1204 1205 /** Check if the instance represents the same time as another instance. 1206 * @param date other date 1207 * @return true if the instance and the other date refer to the same instant 1208 */ 1209 public boolean equals(final Object date) { 1210 1211 if (date == this) { 1212 // first fast check 1213 return true; 1214 } 1215 1216 if (date instanceof AbsoluteDate) { 1217 1218 // Improve robustness against positive/negative infinity dates 1219 if ( this.offset == Double.NEGATIVE_INFINITY && ((AbsoluteDate) date).offset == Double.NEGATIVE_INFINITY || 1220 this.offset == Double.POSITIVE_INFINITY && ((AbsoluteDate) date).offset == Double.POSITIVE_INFINITY ) { 1221 return true; 1222 } else { 1223 return durationFrom((AbsoluteDate) date) == 0; 1224 } 1225 } 1226 1227 return false; 1228 } 1229 1230 /** Check if the instance represents the same time as another. 1231 * @param other the instant to compare this date to 1232 * @return true if the instance and the argument refer to the same instant 1233 * @see #isCloseTo(TimeStamped, double) 1234 * @since 10.1 1235 */ 1236 public boolean isEqualTo(final TimeStamped other) { 1237 return this.equals(other.getDate()); 1238 } 1239 1240 /** Check if the instance time is close to another. 1241 * @param other the instant to compare this date to 1242 * @param tolerance the separation, in seconds, under which the two instants will be considered close to each other 1243 * @return true if the duration between the instance and the argument is strictly below the tolerance 1244 * @see #isEqualTo(TimeStamped) 1245 * @since 10.1 1246 */ 1247 public boolean isCloseTo(final TimeStamped other, final double tolerance) { 1248 return FastMath.abs(this.durationFrom(other.getDate())) < tolerance; 1249 } 1250 1251 /** Check if the instance represents a time that is strictly before another. 1252 * @param other the instant to compare this date to 1253 * @return true if the instance is strictly before the argument when ordering chronologically 1254 * @see #isBeforeOrEqualTo(TimeStamped) 1255 * @since 10.1 1256 */ 1257 public boolean isBefore(final TimeStamped other) { 1258 return this.compareTo(other.getDate()) < 0; 1259 } 1260 1261 /** Check if the instance represents a time that is strictly after another. 1262 * @param other the instant to compare this date to 1263 * @return true if the instance is strictly after the argument when ordering chronologically 1264 * @see #isAfterOrEqualTo(TimeStamped) 1265 * @since 10.1 1266 */ 1267 public boolean isAfter(final TimeStamped other) { 1268 return this.compareTo(other.getDate()) > 0; 1269 } 1270 1271 /** Check if the instance represents a time that is before or equal to another. 1272 * @param other the instant to compare this date to 1273 * @return true if the instance is before (or equal to) the argument when ordering chronologically 1274 * @see #isBefore(TimeStamped) 1275 * @since 10.1 1276 */ 1277 public boolean isBeforeOrEqualTo(final TimeStamped other) { 1278 return this.isEqualTo(other) || this.isBefore(other); 1279 } 1280 1281 /** Check if the instance represents a time that is after or equal to another. 1282 * @param other the instant to compare this date to 1283 * @return true if the instance is after (or equal to) the argument when ordering chronologically 1284 * @see #isAfterOrEqualTo(TimeStamped) 1285 * @since 10.1 1286 */ 1287 public boolean isAfterOrEqualTo(final TimeStamped other) { 1288 return this.isEqualTo(other) || this.isAfter(other); 1289 } 1290 1291 /** Check if the instance represents a time that is strictly between two others representing 1292 * the boundaries of a time span. The two boundaries can be provided in any order: in other words, 1293 * whether <code>boundary</code> represents a time that is before or after <code>otherBoundary</code> will 1294 * not change the result of this method. 1295 * @param boundary one end of the time span 1296 * @param otherBoundary the other end of the time span 1297 * @return true if the instance is strictly between the two arguments when ordering chronologically 1298 * @see #isBetweenOrEqualTo(TimeStamped, TimeStamped) 1299 * @since 10.1 1300 */ 1301 public boolean isBetween(final TimeStamped boundary, final TimeStamped otherBoundary) { 1302 final TimeStamped beginning; 1303 final TimeStamped end; 1304 if (boundary.getDate().isBefore(otherBoundary)) { 1305 beginning = boundary; 1306 end = otherBoundary; 1307 } else { 1308 beginning = otherBoundary; 1309 end = boundary; 1310 } 1311 return this.isAfter(beginning) && this.isBefore(end); 1312 } 1313 1314 /** Check if the instance represents a time that is between two others representing 1315 * the boundaries of a time span, or equal to one of them. The two boundaries can be provided in any order: 1316 * in other words, whether <code>boundary</code> represents a time that is before or after 1317 * <code>otherBoundary</code> will not change the result of this method. 1318 * @param boundary one end of the time span 1319 * @param otherBoundary the other end of the time span 1320 * @return true if the instance is between the two arguments (or equal to at least one of them) 1321 * when ordering chronologically 1322 * @see #isBetween(TimeStamped, TimeStamped) 1323 * @since 10.1 1324 */ 1325 public boolean isBetweenOrEqualTo(final TimeStamped boundary, final TimeStamped otherBoundary) { 1326 return this.isEqualTo(boundary) || this.isEqualTo(otherBoundary) || this.isBetween(boundary, otherBoundary); 1327 } 1328 1329 /** Get a hashcode for this date. 1330 * @return hashcode 1331 */ 1332 public int hashCode() { 1333 final long l = Double.doubleToLongBits(durationFrom(ARBITRARY_EPOCH)); 1334 return (int) (l ^ (l >>> 32)); 1335 } 1336 1337 /** 1338 * Get a String representation of the instant location with up to 16 digits of 1339 * precision for the seconds value. 1340 * 1341 * <p> Since this method is used in exception messages and error handling every 1342 * effort is made to return some representation of the instant. If UTC is available 1343 * from the default data context then it is used to format the string in UTC. If not 1344 * then TAI is used. Finally if the prior attempts fail this method falls back to 1345 * converting this class's internal representation to a string. 1346 * 1347 * <p>This method uses the {@link DataContext#getDefault() default data context}. 1348 * 1349 * @return a string representation of the instance, in ISO-8601 format if UTC is 1350 * available from the default data context. 1351 * @see #toString(TimeScale) 1352 * @see #toStringRfc3339(TimeScale) 1353 * @see DateTimeComponents#toString(int, int) 1354 */ 1355 @DefaultDataContext 1356 public String toString() { 1357 // CHECKSTYLE: stop IllegalCatch check 1358 try { 1359 // try to use UTC first at that is likely most familiar to the user. 1360 return toString(DataContext.getDefault().getTimeScales().getUTC()) + "Z"; 1361 } catch (RuntimeException e1) { 1362 // catch OrekitException, OrekitIllegalStateException, etc. 1363 try { 1364 // UTC failed, try to use TAI 1365 return toString(new TAIScale()) + " TAI"; 1366 } catch (RuntimeException e2) { 1367 // catch OrekitException, OrekitIllegalStateException, etc. 1368 // Likely failed to convert to ymdhms. 1369 // Give user some indication of what time it is. 1370 try { 1371 return "(" + this.epoch + " + " + this.offset + ") seconds past epoch"; 1372 } catch (RuntimeException e3) { 1373 // give up and throw an exception 1374 e2.addSuppressed(e3); 1375 e1.addSuppressed(e2); 1376 throw e1; 1377 } 1378 } 1379 } 1380 // CHECKSTYLE: resume IllegalCatch check 1381 } 1382 1383 /** 1384 * Get a String representation of the instant location in ISO-8601 format without the 1385 * UTC offset and with up to 16 digits of precision for the seconds value. 1386 * 1387 * @param timeScale time scale to use 1388 * @return a string representation of the instance. 1389 * @see #toStringRfc3339(TimeScale) 1390 * @see DateTimeComponents#toString(int, int) 1391 */ 1392 public String toString(final TimeScale timeScale) { 1393 return getComponents(timeScale).toStringWithoutUtcOffset(); 1394 } 1395 1396 /** Get a String representation of the instant location for a local time. 1397 * 1398 * <p>This method uses the {@link DataContext#getDefault() default data context}. 1399 * 1400 * @param minutesFromUTC offset in <em>minutes</em> from UTC (positive Eastwards UTC, 1401 * negative Westward UTC). 1402 * @return string representation of the instance, 1403 * in ISO-8601 format with milliseconds accuracy 1404 * @since 7.2 1405 * @see #toString(int, TimeScale) 1406 */ 1407 @DefaultDataContext 1408 public String toString(final int minutesFromUTC) { 1409 return toString(minutesFromUTC, 1410 DataContext.getDefault().getTimeScales().getUTC()); 1411 } 1412 1413 /** 1414 * Get a String representation of the instant location for a local time. 1415 * 1416 * @param minutesFromUTC offset in <em>minutes</em> from UTC (positive Eastwards UTC, 1417 * negative Westward UTC). 1418 * @param utc time scale used to compute date and time components. 1419 * @return string representation of the instance, in ISO-8601 format with milliseconds 1420 * accuracy 1421 * @since 10.1 1422 * @see #getComponents(int, TimeScale) 1423 * @see DateTimeComponents#toString(int, int) 1424 */ 1425 public String toString(final int minutesFromUTC, final TimeScale utc) { 1426 final int minuteDuration = utc.minuteDuration(this); 1427 return getComponents(minutesFromUTC, utc).toString(minuteDuration); 1428 } 1429 1430 /** Get a String representation of the instant location for a time zone. 1431 * 1432 * <p>This method uses the {@link DataContext#getDefault() default data context}. 1433 * 1434 * @param timeZone time zone 1435 * @return string representation of the instance, 1436 * in ISO-8601 format with milliseconds accuracy 1437 * @since 7.2 1438 * @see #toString(TimeZone, TimeScale) 1439 */ 1440 @DefaultDataContext 1441 public String toString(final TimeZone timeZone) { 1442 return toString(timeZone, DataContext.getDefault().getTimeScales().getUTC()); 1443 } 1444 1445 /** 1446 * Get a String representation of the instant location for a time zone. 1447 * 1448 * @param timeZone time zone 1449 * @param utc time scale used to compute date and time components. 1450 * @return string representation of the instance, in ISO-8601 format with milliseconds 1451 * accuracy 1452 * @since 10.1 1453 * @see #getComponents(TimeZone, TimeScale) 1454 * @see DateTimeComponents#toString(int, int) 1455 */ 1456 public String toString(final TimeZone timeZone, final TimeScale utc) { 1457 final int minuteDuration = utc.minuteDuration(this); 1458 return getComponents(timeZone, utc).toString(minuteDuration); 1459 } 1460 1461 /** 1462 * Represent the given date as a string according to the format in RFC 3339. RFC3339 1463 * is a restricted subset of ISO 8601 with a well defined grammar. Enough digits are 1464 * included in the seconds value to avoid rounding up to the next minute. 1465 * 1466 * <p>This method is different than {@link AbsoluteDate#toString(TimeScale)} in that 1467 * it includes a {@code "Z"} at the end to indicate the time zone and enough precision 1468 * to represent the point in time without rounding up to the next minute. 1469 * 1470 * <p>RFC3339 is unable to represent BC years, years of 10000 or more, time zone 1471 * offsets of 100 hours or more, or NaN. In these cases the value returned from this 1472 * method will not be valid RFC3339 format. 1473 * 1474 * @param utc time scale. 1475 * @return RFC 3339 format string. 1476 * @see <a href="https://tools.ietf.org/html/rfc3339#page-8">RFC 3339</a> 1477 * @see DateTimeComponents#toStringRfc3339() 1478 * @see #toString(TimeScale) 1479 * @see #getComponents(TimeScale) 1480 */ 1481 public String toStringRfc3339(final TimeScale utc) { 1482 return this.getComponents(utc).toStringRfc3339(); 1483 } 1484 1485 /** 1486 * Return a string representation of this date-time, rounded to the given precision. 1487 * 1488 * <p>The format used is ISO8601 without the UTC offset.</p> 1489 * 1490 * <p>Calling {@code toStringWithoutUtcOffset(DataContext.getDefault().getTimeScales().getUTC(), 1491 * 3)} will emulate the behavior of {@link #toString()} in Orekit 10 and earlier. Note 1492 * this method is more accurate as it correctly handles rounding during leap seconds. 1493 * 1494 * @param timeScale to use to compute components. 1495 * @param fractionDigits the number of digits to include after the decimal point in 1496 * the string representation of the seconds. The date and time 1497 * is first rounded as necessary. {@code fractionDigits} must be 1498 * greater than or equal to {@code 0}. 1499 * @return string representation of this date, time, and UTC offset 1500 * @see #toString(TimeScale) 1501 * @see #toStringRfc3339(TimeScale) 1502 * @see DateTimeComponents#toString(int, int) 1503 * @see DateTimeComponents#toStringWithoutUtcOffset(int, int) 1504 * @since 11.1 1505 */ 1506 public String toStringWithoutUtcOffset(final TimeScale timeScale, 1507 final int fractionDigits) { 1508 return this.getComponents(timeScale) 1509 .toStringWithoutUtcOffset(timeScale.minuteDuration(this), fractionDigits); 1510 } 1511 1512 }