1   /* Copyright 2002-2022 CS GROUP
2    * Licensed to CS GROUP (CS) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * CS licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *   http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  package org.orekit.propagation.numerical;
18  
19  import java.util.HashMap;
20  import java.util.List;
21  import java.util.Map;
22  
23  import org.hipparchus.analysis.differentiation.Gradient;
24  import org.hipparchus.exception.LocalizedCoreFormats;
25  import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
26  import org.hipparchus.linear.MatrixUtils;
27  import org.hipparchus.linear.QRDecomposition;
28  import org.hipparchus.linear.RealMatrix;
29  import org.hipparchus.util.Precision;
30  import org.orekit.attitudes.AttitudeProvider;
31  import org.orekit.errors.OrekitException;
32  import org.orekit.forces.ForceModel;
33  import org.orekit.orbits.OrbitType;
34  import org.orekit.orbits.PositionAngle;
35  import org.orekit.propagation.FieldSpacecraftState;
36  import org.orekit.propagation.SpacecraftState;
37  import org.orekit.propagation.integration.AdditionalDerivativesProvider;
38  import org.orekit.propagation.integration.CombinedDerivatives;
39  import org.orekit.utils.DoubleArrayDictionary;
40  import org.orekit.utils.ParameterDriver;
41  
42  /** Generator for State Transition Matrix.
43   * @author Luc Maisonobe
44   * @since 11.1
45   */
46  class StateTransitionMatrixGenerator implements AdditionalDerivativesProvider {
47  
48      /** Threshold for matrix solving. */
49      private static final double THRESHOLD = Precision.SAFE_MIN;
50  
51      /** Space dimension. */
52      private static final int SPACE_DIMENSION = 3;
53  
54      /** State dimension. */
55      public static final int STATE_DIMENSION = 2 * SPACE_DIMENSION;
56  
57      /** Name of the Cartesian STM additional state. */
58      private final String stmName;
59  
60      /** Force models used in propagation. */
61      private final List<ForceModel> forceModels;
62  
63      /** Attitude provider used in propagation. */
64      private final AttitudeProvider attitudeProvider;
65  
66      /** Observers for partial derivatives. */
67      private final Map<String, PartialsObserver> partialsObservers;
68  
69      /** Simple constructor.
70       * @param stmName name of the Cartesian STM additional state
71       * @param forceModels force models used in propagation
72       * @param attitudeProvider attitude provider used in propagation
73       */
74      StateTransitionMatrixGenerator(final String stmName, final List<ForceModel> forceModels,
75                                     final AttitudeProvider attitudeProvider) {
76          this.stmName           = stmName;
77          this.forceModels       = forceModels;
78          this.attitudeProvider  = attitudeProvider;
79          this.partialsObservers = new HashMap<>();
80      }
81  
82      /** Register an observer for partial derivatives.
83       * <p>
84       * The observer {@link PartialsObserver#partialsComputed(double[], double[]) partialsComputed}
85       * method will be called when partial derivatives are computed, as a side effect of
86       * calling {@link #generate(SpacecraftState)}
87       * </p>
88       * @param name name of the parameter driver this observer is interested in (may be null)
89       * @param observer observer to register
90       */
91      void addObserver(final String name, final PartialsObserver observer) {
92          partialsObservers.put(name, observer);
93      }
94  
95      /** {@inheritDoc} */
96      @Override
97      public String getName() {
98          return stmName;
99      }
100 
101     /** {@inheritDoc} */
102     @Override
103     public int getDimension() {
104         return STATE_DIMENSION * STATE_DIMENSION;
105     }
106 
107     /** {@inheritDoc} */
108     @Override
109     public boolean yield(final SpacecraftState state) {
110         return !state.hasAdditionalState(getName());
111     }
112 
113     /** Set the initial value of the State Transition Matrix.
114      * <p>
115      * The returned state must be added to the propagator.
116      * </p>
117      * @param state initial state
118      * @param dYdY0 initial State Transition Matrix ∂Y/∂Y₀,
119      * if null (which is the most frequent case), assumed to be 6x6 identity
120      * @param orbitType orbit type used for states Y and Y₀ in {@code dYdY0}
121      * @param positionAngle position angle used states Y and Y₀ in {@code dYdY0}
122      * @return state with initial STM (converted to Cartesian ∂C/∂Y₀) added
123      */
124     SpacecraftState setInitialStateTransitionMatrix(final SpacecraftState state,
125                                                     final RealMatrix dYdY0,
126                                                     final OrbitType orbitType,
127                                                     final PositionAngle positionAngle) {
128 
129         final RealMatrix nonNullDYdY0;
130         if (dYdY0 == null) {
131             nonNullDYdY0 = MatrixUtils.createRealIdentityMatrix(STATE_DIMENSION);
132         } else {
133             if (dYdY0.getRowDimension() != STATE_DIMENSION ||
134                             dYdY0.getColumnDimension() != STATE_DIMENSION) {
135                 throw new OrekitException(LocalizedCoreFormats.DIMENSIONS_MISMATCH_2x2,
136                                           dYdY0.getRowDimension(), dYdY0.getColumnDimension(),
137                                           STATE_DIMENSION, STATE_DIMENSION);
138             }
139             nonNullDYdY0 = dYdY0;
140         }
141 
142         // convert to Cartesian STM
143         final RealMatrix dCdY0;
144         if (state.isOrbitDefined()) {
145             final double[][] dYdC = new double[STATE_DIMENSION][STATE_DIMENSION];
146             orbitType.convertType(state.getOrbit()).getJacobianWrtCartesian(positionAngle, dYdC);
147             dCdY0 = new QRDecomposition(MatrixUtils.createRealMatrix(dYdC), THRESHOLD).getSolver().solve(nonNullDYdY0);
148         } else {
149             dCdY0 = nonNullDYdY0;
150         }
151 
152         // flatten matrix
153         final double[] flat = new double[STATE_DIMENSION * STATE_DIMENSION];
154         int k = 0;
155         for (int i = 0; i < STATE_DIMENSION; ++i) {
156             for (int j = 0; j < STATE_DIMENSION; ++j) {
157                 flat[k++] = dCdY0.getEntry(i, j);
158             }
159         }
160 
161         // set additional state
162         return state.addAdditionalState(stmName, flat);
163 
164     }
165 
166     /** {@inheritDoc} */
167     @Override
168     @Deprecated
169     public double[] derivatives(final SpacecraftState state) {
170         return combinedDerivatives(state).getAdditionalDerivatives();
171     }
172 
173     /** {@inheritDoc} */
174     public CombinedDerivatives combinedDerivatives(final SpacecraftState state) {
175 
176         // Assuming position is (px, py, pz), velocity is (vx, vy, vz) and the acceleration
177         // due to the force models is (Σ ax, Σ ay, Σ az), the differential equation for
178         // Cartesian State Transition Matrix ∂C/∂Y₀ for the contribution of all force models is:
179         //                   [     0          0          0            1          0          0   ]
180         //                   [     0          0          0            0          1          0   ]
181         //  d(∂C/∂Y₀)/dt  =  [     0          0          0            1          0          1   ] ⨯ ∂C/∂Y₀
182         //                   [Σ dax/dpx  Σ dax/dpy  Σ dax/dpz    Σ dax/dvx  Σ dax/dvy  Σ dax/dvz]
183         //                   [Σ day/dpx  Σ day/dpy  Σ dax/dpz    Σ day/dvx  Σ day/dvy  Σ dax/dvz]
184         //                   [Σ daz/dpx  Σ daz/dpy  Σ dax/dpz    Σ daz/dvx  Σ daz/dvy  Σ dax/dvz]
185         // some force models depend on velocity (either directly or through attitude),
186         // whereas some other force models depend only on position.
187         // For the latter, the lower right part of the matrix is zero
188         final double[] factor = computePartials(state);
189 
190         // retrieve current State Transition Matrix
191         final double[] p    = state.getAdditionalState(getName());
192         final double[] pDot = new double[p.length];
193 
194         // perform multiplication
195         multiplyMatrix(factor, p, pDot, STATE_DIMENSION);
196 
197         return new CombinedDerivatives(pDot, null);
198 
199     }
200 
201     /** Compute evolution matrix product.
202      * <p>
203      * This method computes \(Y = F \times X\) where the factor matrix is:
204      * \[F = \begin{matrix}
205      *               0         &             0         &             0         &             1         &             0         &             0        \\
206      *               0         &             0         &             0         &             0         &             1         &             0        \\
207      *               0         &             0         &             0         &             0         &             0         &             1        \\
208      *  \sum \frac{da_x}{dp_x} & \sum\frac{da_x}{dp_y} & \sum\frac{da_x}{dp_z} & \sum\frac{da_x}{dv_x} & \sum\frac{da_x}{dv_y} & \sum\frac{da_x}{dv_z}\\
209      *  \sum \frac{da_y}{dp_x} & \sum\frac{da_y}{dp_y} & \sum\frac{da_y}{dp_z} & \sum\frac{da_y}{dv_x} & \sum\frac{da_y}{dv_y} & \sum\frac{da_y}{dv_z}\\
210      *  \sum \frac{da_z}{dp_x} & \sum\frac{da_z}{dp_y} & \sum\frac{da_z}{dp_z} & \sum\frac{da_z}{dv_x} & \sum\frac{da_z}{dv_y} & \sum\frac{da_z}{dv_z}
211      * \end{matrix}\]
212      * </p>
213      * @param factor factor matrix
214      * @param x right factor of the multiplication, as a flatten array in row major order
215      * @param y placeholder where to put the result, as a flatten array in row major order
216      * @param columns number of columns of both x and y (so their dimensions are 6 x columns)
217      */
218     static void multiplyMatrix(final double[] factor, final double[] x, final double[] y, final int columns) {
219 
220         final int n = SPACE_DIMENSION * columns;
221 
222         // handle first three rows by a simple copy
223         System.arraycopy(x, n, y, 0, n);
224 
225         // regular multiplication for the last three rows
226         for (int j = 0; j < columns; ++j) {
227             y[n + j              ] = factor[ 0] * x[j              ] + factor[ 1] * x[j +     columns] + factor[ 2] * x[j + 2 * columns] +
228                                      factor[ 3] * x[j + 3 * columns] + factor[ 4] * x[j + 4 * columns] + factor[ 5] * x[j + 5 * columns];
229             y[n + j +     columns] = factor[ 6] * x[j              ] + factor[ 7] * x[j +     columns] + factor[ 8] * x[j + 2 * columns] +
230                                      factor[ 9] * x[j + 3 * columns] + factor[10] * x[j + 4 * columns] + factor[11] * x[j + 5 * columns];
231             y[n + j + 2 * columns] = factor[12] * x[j              ] + factor[13] * x[j +     columns] + factor[14] * x[j + 2 * columns] +
232                                      factor[15] * x[j + 3 * columns] + factor[16] * x[j + 4 * columns] + factor[17] * x[j + 5 * columns];
233         }
234 
235     }
236 
237     /** Compute the various partial derivatives.
238      * @param state current spacecraft state
239      * @return factor matrix
240      */
241     private double[] computePartials(final SpacecraftState state) {
242 
243         // set up containers for partial derivatives
244         final double[]              factor               = new double[SPACE_DIMENSION * STATE_DIMENSION];
245         final DoubleArrayDictionary accelerationPartials = new DoubleArrayDictionary();
246 
247         // evaluate contribution of all force models
248         final NumericalGradientConverter fullConverter    = new NumericalGradientConverter(state, STATE_DIMENSION, attitudeProvider);
249         final NumericalGradientConverter posOnlyConverter = new NumericalGradientConverter(state, SPACE_DIMENSION, attitudeProvider);
250         for (final ForceModel forceModel : forceModels) {
251 
252             final NumericalGradientConverter     converter    = forceModel.dependsOnPositionOnly() ? posOnlyConverter : fullConverter;
253             final FieldSpacecraftState<Gradient> dsState      = converter.getState(forceModel);
254             final Gradient[]                     parameters   = converter.getParameters(dsState, forceModel);
255             final FieldVector3D<Gradient>        acceleration = forceModel.acceleration(dsState, parameters);
256             final double[]                       gradX        = acceleration.getX().getGradient();
257             final double[]                       gradY        = acceleration.getY().getGradient();
258             final double[]                       gradZ        = acceleration.getZ().getGradient();
259 
260             // lower left part of the factor matrix
261             factor[ 0] += gradX[0];
262             factor[ 1] += gradX[1];
263             factor[ 2] += gradX[2];
264             factor[ 6] += gradY[0];
265             factor[ 7] += gradY[1];
266             factor[ 8] += gradY[2];
267             factor[12] += gradZ[0];
268             factor[13] += gradZ[1];
269             factor[14] += gradZ[2];
270 
271             if (!forceModel.dependsOnPositionOnly()) {
272                 // lower right part of the factor matrix
273                 factor[ 3] += gradX[3];
274                 factor[ 4] += gradX[4];
275                 factor[ 5] += gradX[5];
276                 factor[ 9] += gradY[3];
277                 factor[10] += gradY[4];
278                 factor[11] += gradY[5];
279                 factor[15] += gradZ[3];
280                 factor[16] += gradZ[4];
281                 factor[17] += gradZ[5];
282             }
283 
284             // partials derivatives with respect to parameters
285             int paramsIndex = converter.getFreeStateParameters();
286             for (ParameterDriver driver : forceModel.getParametersDrivers()) {
287                 if (driver.isSelected()) {
288 
289                     // get the partials derivatives for this driver
290                     DoubleArrayDictionary.Entry entry = accelerationPartials.getEntry(driver.getName());
291                     if (entry == null) {
292                         // create an entry filled with zeroes
293                         accelerationPartials.put(driver.getName(), new double[SPACE_DIMENSION]);
294                         entry = accelerationPartials.getEntry(driver.getName());
295                     }
296 
297                     // add the contribution of the current force model
298                     entry.increment(new double[] {
299                         gradX[paramsIndex], gradY[paramsIndex], gradZ[paramsIndex]
300                     });
301                     ++paramsIndex;
302 
303                 }
304             }
305 
306             // notify observers
307             for (Map.Entry<String, PartialsObserver> observersEntry : partialsObservers.entrySet()) {
308                 final DoubleArrayDictionary.Entry entry = accelerationPartials.getEntry(observersEntry.getKey());
309                 observersEntry.getValue().partialsComputed(state, factor, entry == null ? new double[SPACE_DIMENSION] : entry.getValue());
310             }
311 
312         }
313 
314         return factor;
315 
316     }
317 
318     /** Interface for observing partials derivatives. */
319     public interface PartialsObserver {
320 
321         /** Callback called when partial derivatives have been computed.
322          * <p>
323          * The factor matrix is:
324          * \[F = \begin{matrix}
325          *               0         &             0         &             0         &             1         &             0         &             0        \\
326          *               0         &             0         &             0         &             0         &             1         &             0        \\
327          *               0         &             0         &             0         &             0         &             0         &             1        \\
328          *  \sum \frac{da_x}{dp_x} & \sum\frac{da_x}{dp_y} & \sum\frac{da_x}{dp_z} & \sum\frac{da_x}{dv_x} & \sum\frac{da_x}{dv_y} & \sum\frac{da_x}{dv_z}\\
329          *  \sum \frac{da_y}{dp_x} & \sum\frac{da_y}{dp_y} & \sum\frac{da_y}{dp_z} & \sum\frac{da_y}{dv_x} & \sum\frac{da_y}{dv_y} & \sum\frac{da_y}{dv_z}\\
330          *  \sum \frac{da_z}{dp_x} & \sum\frac{da_z}{dp_y} & \sum\frac{da_z}{dp_z} & \sum\frac{da_z}{dv_x} & \sum\frac{da_z}{dv_y} & \sum\frac{da_z}{dv_z}
331          * \end{matrix}\]
332          * </p>
333          * @param state current spacecraft state
334          * @param factor factor matrix, flattened along rows
335          * @param accelerationPartials partials derivatives of acceleration with respect to the parameter driver
336          * that was registered (zero if no parameters were not selected or parameter is unknown)
337          */
338         void partialsComputed(SpacecraftState state, double[] factor, double[] accelerationPartials);
339 
340     }
341 
342 }
343