public class CircularOrbit extends Orbit implements PositionAngleBased
The parameters used internally are the circular elements which can be related to Keplerian elements as follows:
The conversion equations from and to Keplerian elements given above hold only
when both sides are unambiguously defined, i.e. when orbit is neither equatorial
nor circular. When orbit is circular (but not equatorial), the circular
parameters are still unambiguously defined whereas some Keplerian elements
(more precisely ω and Ω) become ambiguous. When orbit is equatorial,
neither the Keplerian nor the circular parameters can be defined unambiguously.
equinoctial orbits is the recommended way to represent
orbits.
The instance CircularOrbit is guaranteed to be immutable.
Orbit,
KeplerianOrbit,
CartesianOrbit,
EquinoctialOrbit,
Serialized Form| Constructor and Description |
|---|
CircularOrbit(double a,
double ex,
double ey,
double i,
double raan,
double alpha,
double aDot,
double exDot,
double eyDot,
double iDot,
double raanDot,
double alphaDot,
PositionAngleType type,
Frame frame,
AbsoluteDate date,
double mu)
Creates a new instance.
|
CircularOrbit(double a,
double ex,
double ey,
double i,
double raan,
double alpha,
PositionAngleType type,
Frame frame,
AbsoluteDate date,
double mu)
Creates a new instance.
|
CircularOrbit(Orbit op)
Constructor from any kind of orbital parameters.
|
CircularOrbit(PVCoordinates pvCoordinates,
Frame frame,
AbsoluteDate date,
double mu)
Constructor from Cartesian parameters.
|
CircularOrbit(TimeStampedPVCoordinates pvCoordinates,
Frame frame,
double mu)
Constructor from Cartesian parameters.
|
| Modifier and Type | Method and Description |
|---|---|
void |
addKeplerContribution(PositionAngleType type,
double gm,
double[] pDot)
Add the contribution of the Keplerian motion to parameters derivatives
|
protected double[][] |
computeJacobianEccentricWrtCartesian()
Compute the Jacobian of the orbital parameters with eccentric angle with respect to the Cartesian parameters.
|
protected double[][] |
computeJacobianMeanWrtCartesian()
Compute the Jacobian of the orbital parameters with mean angle with respect to the Cartesian parameters.
|
protected double[][] |
computeJacobianTrueWrtCartesian()
Compute the Jacobian of the orbital parameters with true angle with respect to the Cartesian parameters.
|
static double |
eccentricToMean(double alphaE,
double ex,
double ey)
Computes the mean latitude argument from the eccentric latitude argument.
|
static double |
eccentricToTrue(double alphaE,
double ex,
double ey)
Computes the true latitude argument from the eccentric latitude argument.
|
double |
getA()
Get the semi-major axis.
|
double |
getADot()
Get the semi-major axis derivative.
|
double |
getAlpha(PositionAngleType type)
Get the latitude argument.
|
double |
getAlphaDot(PositionAngleType type)
Get the latitude argument derivative.
|
double |
getAlphaE()
Get the eccentric latitude argument.
|
double |
getAlphaEDot()
Get the eccentric latitude argument derivative.
|
double |
getAlphaM()
Get the mean latitude argument.
|
double |
getAlphaMDot()
Get the mean latitude argument derivative.
|
double |
getAlphaV()
Get the true latitude argument.
|
double |
getAlphaVDot()
Get the true latitude argument derivative.
|
PositionAngleType |
getCachedPositionAngleType()
Get the cached
PositionAngleType. |
double |
getCircularEx()
Get the first component of the circular eccentricity vector.
|
double |
getCircularExDot()
Get the first component of the circular eccentricity vector derivative.
|
double |
getCircularEy()
Get the second component of the circular eccentricity vector.
|
double |
getCircularEyDot()
Get the second component of the circular eccentricity vector derivative.
|
double |
getE()
Get the eccentricity.
|
double |
getEDot()
Get the eccentricity derivative.
|
double |
getEquinoctialEx()
Get the first component of the equinoctial eccentricity vector derivative.
|
double |
getEquinoctialExDot()
Get the first component of the equinoctial eccentricity vector.
|
double |
getEquinoctialEy()
Get the second component of the equinoctial eccentricity vector derivative.
|
double |
getEquinoctialEyDot()
Get the second component of the equinoctial eccentricity vector.
|
double |
getHx()
Get the first component of the inclination vector.
|
double |
getHxDot()
Get the first component of the inclination vector derivative.
|
double |
getHy()
Get the second component of the inclination vector.
|
double |
getHyDot()
Get the second component of the inclination vector derivative.
|
double |
getI()
Get the inclination.
|
double |
getIDot()
Get the inclination derivative.
|
double |
getLE()
Get the eccentric longitude argument.
|
double |
getLEDot()
Get the eccentric longitude argument derivative.
|
double |
getLM()
Get the mean longitude argument.
|
double |
getLMDot()
Get the mean longitude argument derivative.
|
double |
getLv()
Get the true longitude argument.
|
double |
getLvDot()
Get the true longitude argument derivative.
|
double |
getRightAscensionOfAscendingNode()
Get the right ascension of the ascending node.
|
double |
getRightAscensionOfAscendingNodeDot()
Get the right ascension of the ascending node derivative.
|
OrbitType |
getType()
Get the orbit type.
|
boolean |
hasRates()
Tells whether the instance holds rates (first-order time derivatives) for dependent variables.
|
protected org.hipparchus.geometry.euclidean.threed.Vector3D |
initPosition()
Compute the position coordinates from the canonical parameters.
|
protected TimeStampedPVCoordinates |
initPVCoordinates()
Compute the position/velocity coordinates from the canonical parameters.
|
static double |
meanToEccentric(double alphaM,
double ex,
double ey)
Computes the eccentric latitude argument from the mean latitude argument.
|
CircularOrbit |
removeRates()
Create a new instance such that
PositionAngleBased.hasRates() is false. |
CircularOrbit |
shiftedBy(double dt)
Get a time-shifted orbit.
|
String |
toString()
Returns a string representation of this Orbit object.
|
static double |
trueToEccentric(double alphaV,
double ex,
double ey)
Computes the eccentric latitude argument from the true latitude argument.
|
fillHalfRow, fillHalfRow, fillHalfRow, fillHalfRow, fillHalfRow, fillHalfRow, getDate, getFrame, getJacobianWrtCartesian, getJacobianWrtParameters, getKeplerianMeanMotion, getKeplerianPeriod, getMeanAnomalyDotWrtA, getMu, getPosition, getPosition, getPVCoordinates, getPVCoordinates, getPVCoordinates, hasDerivatives, hasNonKeplerianAcceleration, isEllipticalclone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, waitdurationFromgetPositionpublic CircularOrbit(double a,
double ex,
double ey,
double i,
double raan,
double alpha,
PositionAngleType type,
Frame frame,
AbsoluteDate date,
double mu)
throws IllegalArgumentException
a - semi-major axis (m)ex - e cos(ω), first component of circular eccentricity vectorey - e sin(ω), second component of circular eccentricity vectori - inclination (rad)raan - right ascension of ascending node (Ω, rad)alpha - an + ω, mean, eccentric or true latitude argument (rad)type - type of latitude argumentframe - the frame in which are defined the parameters
(must be a pseudo-inertial frame)date - date of the orbital parametersmu - central attraction coefficient (m³/s²)IllegalArgumentException - if eccentricity is equal to 1 or larger or
if frame is not a pseudo-inertial framepublic CircularOrbit(double a,
double ex,
double ey,
double i,
double raan,
double alpha,
double aDot,
double exDot,
double eyDot,
double iDot,
double raanDot,
double alphaDot,
PositionAngleType type,
Frame frame,
AbsoluteDate date,
double mu)
throws IllegalArgumentException
a - semi-major axis (m)ex - e cos(ω), first component of circular eccentricity vectorey - e sin(ω), second component of circular eccentricity vectori - inclination (rad)raan - right ascension of ascending node (Ω, rad)alpha - an + ω, mean, eccentric or true latitude argument (rad)aDot - semi-major axis derivative (m/s)exDot - d(e cos(ω))/dt, first component of circular eccentricity vector derivativeeyDot - d(e sin(ω))/dt, second component of circular eccentricity vector derivativeiDot - inclination derivative(rad/s)raanDot - right ascension of ascending node derivative (rad/s)alphaDot - d(an + ω), mean, eccentric or true latitude argument derivative (rad/s)type - type of latitude argumentframe - the frame in which are defined the parameters
(must be a pseudo-inertial frame)date - date of the orbital parametersmu - central attraction coefficient (m³/s²)IllegalArgumentException - if eccentricity is equal to 1 or larger or
if frame is not a pseudo-inertial framepublic CircularOrbit(TimeStampedPVCoordinates pvCoordinates, Frame frame, double mu) throws IllegalArgumentException
The acceleration provided in pvCoordinates is accessible using
Orbit.getPVCoordinates() and Orbit.getPVCoordinates(Frame). All other methods
use mu and the position to compute the acceleration, including
shiftedBy(double) and Orbit.getPVCoordinates(AbsoluteDate, Frame).
pvCoordinates - the PVCoordinates in inertial frameframe - the frame in which are defined the PVCoordinates
(must be a pseudo-inertial frame)mu - central attraction coefficient (m³/s²)IllegalArgumentException - if frame is not a pseudo-inertial framepublic CircularOrbit(PVCoordinates pvCoordinates, Frame frame, AbsoluteDate date, double mu) throws IllegalArgumentException
The acceleration provided in pvCoordinates is accessible using
Orbit.getPVCoordinates() and Orbit.getPVCoordinates(Frame). All other methods
use mu and the position to compute the acceleration, including
shiftedBy(double) and Orbit.getPVCoordinates(AbsoluteDate, Frame).
pvCoordinates - the PVCoordinates in inertial frameframe - the frame in which are defined the PVCoordinates
(must be a pseudo-inertial frame)date - date of the orbital parametersmu - central attraction coefficient (m³/s²)IllegalArgumentException - if frame is not a pseudo-inertial framepublic CircularOrbit(Orbit op)
op - orbital parameters to copypublic OrbitType getType()
public double getA()
Note that the semi-major axis is considered negative for hyperbolic orbits.
public double getADot()
Note that the semi-major axis is considered negative for hyperbolic orbits.
If the orbit was created without derivatives, the value returned is Double.NaN.
getADot in class OrbitOrbit.hasDerivatives()public double getEquinoctialEx()
getEquinoctialEx in class Orbitpublic double getEquinoctialExDot()
If the orbit was created without derivatives, the value returned is Double.NaN.
getEquinoctialExDot in class OrbitOrbit.hasDerivatives()public double getEquinoctialEy()
getEquinoctialEy in class Orbitpublic double getEquinoctialEyDot()
If the orbit was created without derivatives, the value returned is Double.NaN.
getEquinoctialEyDot in class OrbitOrbit.hasDerivatives()public double getCircularEx()
public double getCircularExDot()
public double getCircularEy()
public double getCircularEyDot()
public double getHx()
public double getHxDot()
If the orbit was created without derivatives, the value returned is Double.NaN.
getHxDot in class OrbitOrbit.hasDerivatives()public double getHy()
public double getHyDot()
If the orbit was created without derivatives, the value returned is Double.NaN.
getHyDot in class OrbitOrbit.hasDerivatives()public double getAlphaV()
public double getAlphaVDot()
If the orbit was created without derivatives, the value returned is Double.NaN.
public double getAlphaE()
public double getAlphaEDot()
If the orbit was created without derivatives, the value returned is Double.NaN.
public double getAlphaM()
public double getAlphaMDot()
If the orbit was created without derivatives, the value returned is Double.NaN.
public double getAlpha(PositionAngleType type)
type - type of the anglepublic double getAlphaDot(PositionAngleType type)
If the orbit was created without derivatives, the value returned is Double.NaN.
type - type of the anglepublic static double eccentricToTrue(double alphaE,
double ex,
double ey)
alphaE - = E + ω eccentric latitude argument (rad)ex - e cos(ω), first component of circular eccentricity vectorey - e sin(ω), second component of circular eccentricity vectorpublic static double trueToEccentric(double alphaV,
double ex,
double ey)
alphaV - = V + ω true latitude argument (rad)ex - e cos(ω), first component of circular eccentricity vectorey - e sin(ω), second component of circular eccentricity vectorpublic static double meanToEccentric(double alphaM,
double ex,
double ey)
alphaM - = M + ω mean latitude argument (rad)ex - e cos(ω), first component of circular eccentricity vectorey - e sin(ω), second component of circular eccentricity vectorpublic static double eccentricToMean(double alphaE,
double ex,
double ey)
alphaE - = E + ω mean latitude argument (rad)ex - e cos(ω), first component of circular eccentricity vectorey - e sin(ω), second component of circular eccentricity vectorpublic double getE()
public double getEDot()
If the orbit was created without derivatives, the value returned is Double.NaN.
getEDot in class OrbitOrbit.hasDerivatives()public double getI()
public double getIDot()
If the orbit was created without derivatives, the value returned is Double.NaN.
getIDot in class OrbitOrbit.hasDerivatives()public double getRightAscensionOfAscendingNode()
public double getRightAscensionOfAscendingNodeDot()
If the orbit was created without derivatives, the value returned is Double.NaN.
public double getLv()
public double getLvDot()
If the orbit was created without derivatives, the value returned is Double.NaN.
getLvDot in class OrbitOrbit.hasDerivatives()public double getLE()
public double getLEDot()
If the orbit was created without derivatives, the value returned is Double.NaN.
getLEDot in class OrbitOrbit.hasDerivatives()public double getLM()
public double getLMDot()
If the orbit was created without derivatives, the value returned is Double.NaN.
getLMDot in class OrbitOrbit.hasDerivatives()protected org.hipparchus.geometry.euclidean.threed.Vector3D initPosition()
initPosition in class Orbitprotected TimeStampedPVCoordinates initPVCoordinates()
initPVCoordinates in class Orbitpublic CircularOrbit shiftedBy(double dt)
The orbit can be slightly shifted to close dates. The shifting model is a Keplerian one if no derivatives are available in the orbit, or Keplerian plus quadratic effect of the non-Keplerian acceleration if derivatives are available. Shifting is not intended as a replacement for proper orbit propagation but should be sufficient for small time shifts or coarse accuracy.
shiftedBy in interface TimeShiftable<Orbit>shiftedBy in class Orbitdt - time shift in secondsprotected double[][] computeJacobianMeanWrtCartesian()
Element jacobian[i][j] is the derivative of parameter i of the orbit with
respect to Cartesian coordinate j. This means each row correspond to one orbital parameter
whereas columns 0 to 5 correspond to the Cartesian coordinates x, y, z, xDot, yDot and zDot.
The array returned by this method will not be modified.
computeJacobianMeanWrtCartesian in class OrbitOrbit.computeJacobianEccentricWrtCartesian(),
Orbit.computeJacobianTrueWrtCartesian()protected double[][] computeJacobianEccentricWrtCartesian()
Element jacobian[i][j] is the derivative of parameter i of the orbit with
respect to Cartesian coordinate j. This means each row correspond to one orbital parameter
whereas columns 0 to 5 correspond to the Cartesian coordinates x, y, z, xDot, yDot and zDot.
The array returned by this method will not be modified.
computeJacobianEccentricWrtCartesian in class OrbitOrbit.computeJacobianMeanWrtCartesian(),
Orbit.computeJacobianTrueWrtCartesian()protected double[][] computeJacobianTrueWrtCartesian()
Element jacobian[i][j] is the derivative of parameter i of the orbit with
respect to Cartesian coordinate j. This means each row correspond to one orbital parameter
whereas columns 0 to 5 correspond to the Cartesian coordinates x, y, z, xDot, yDot and zDot.
The array returned by this method will not be modified.
computeJacobianTrueWrtCartesian in class OrbitOrbit.computeJacobianMeanWrtCartesian(),
Orbit.computeJacobianEccentricWrtCartesian()public void addKeplerContribution(PositionAngleType type, double gm, double[] pDot)
This method is used by integration-based propagators to evaluate the part of Keplerian motion to evolution of the orbital state.
addKeplerContribution in class Orbittype - type of the position angle in the stategm - attraction coefficient to usepDot - array containing orbital state derivatives to update (the Keplerian
part must be added to the array components, as the array may already
contain some non-zero elements corresponding to non-Keplerian parts)public String toString()
public PositionAngleType getCachedPositionAngleType()
PositionAngleType.getCachedPositionAngleType in interface PositionAngleBasedpublic boolean hasRates()
hasRates in interface PositionAngleBasedpublic CircularOrbit removeRates()
PositionAngleBased.hasRates() is false.removeRates in interface PositionAngleBasedCopyright © 2002-2023 CS GROUP. All rights reserved.