1 /* Copyright 2002-2024 CS GROUP
2 * Licensed to CS GROUP (CS) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * CS licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17 package org.orekit.forces;
18
19 import java.util.stream.Stream;
20
21 import org.hipparchus.CalculusFieldElement;
22 import org.hipparchus.Field;
23 import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
24 import org.hipparchus.geometry.euclidean.threed.Vector3D;
25 import org.orekit.propagation.FieldSpacecraftState;
26 import org.orekit.propagation.SpacecraftState;
27 import org.orekit.propagation.events.EventDetector;
28 import org.orekit.propagation.events.EventDetectorsProvider;
29 import org.orekit.propagation.events.FieldEventDetector;
30 import org.orekit.propagation.numerical.FieldTimeDerivativesEquations;
31 import org.orekit.propagation.numerical.TimeDerivativesEquations;
32 import org.orekit.time.AbsoluteDate;
33 import org.orekit.time.FieldAbsoluteDate;
34 import org.orekit.utils.ParameterDriversProvider;
35
36 /** This interface represents a force modifying spacecraft motion.
37 *
38 * <p>
39 * Objects implementing this interface are intended to be added to a
40 * {@link org.orekit.propagation.numerical.NumericalPropagator numerical propagator}
41 * before the propagation is started.
42 *
43 * <p>
44 * The propagator will call at each step the {@link #addContribution(SpacecraftState,
45 * TimeDerivativesEquations)} method. The force model instance will extract all the
46 * state data it needs (date, position, velocity, frame, attitude, mass) from the first
47 * parameter. From these state data, it will compute the perturbing acceleration. It
48 * will then add this acceleration to the second parameter which will take thins
49 * contribution into account and will use the Gauss equations to evaluate its impact
50 * on the global state derivative.
51 * </p>
52 * <p>
53 * Force models which create discontinuous acceleration patterns (typically for maneuvers
54 * start/stop or solar eclipses entry/exit) must provide one or more {@link
55 * org.orekit.propagation.events.EventDetector events detectors} to the
56 * propagator thanks to their {@link #getEventDetectors()} method. This method
57 * is called once just before propagation starts. The events states will be checked by
58 * the propagator to ensure accurate propagation and proper events handling.
59 * </p>
60 *
61 * @author Mathieu Roméro
62 * @author Luc Maisonobe
63 * @author Véronique Pommier-Maurussane
64 * @author Melina Vanel
65 */
66 public interface ForceModel extends ParameterDriversProvider, EventDetectorsProvider {
67
68 /**
69 * Initialize the force model at the start of propagation. This method will be called
70 * before any calls to {@link #addContribution(SpacecraftState, TimeDerivativesEquations)},
71 * {@link #addContribution(FieldSpacecraftState, FieldTimeDerivativesEquations)},
72 * {@link #acceleration(SpacecraftState, double[])} or {@link #acceleration(FieldSpacecraftState, CalculusFieldElement[])}
73 *
74 * <p> The default implementation of this method does nothing.</p>
75 *
76 * @param initialState spacecraft state at the start of propagation.
77 * @param target date of propagation. Not equal to {@code initialState.getDate()}.
78 */
79 default void init(SpacecraftState initialState, AbsoluteDate target) {
80 }
81
82 /**
83 * Initialize the force model at the start of propagation. This method will be called
84 * before any calls to {@link #addContribution(SpacecraftState, TimeDerivativesEquations)},
85 * {@link #addContribution(FieldSpacecraftState, FieldTimeDerivativesEquations)},
86 * {@link #acceleration(SpacecraftState, double[])} or {@link #acceleration(FieldSpacecraftState, CalculusFieldElement[])}
87 *
88 * <p> The default implementation of this method does nothing.</p>
89 *
90 * @param initialState spacecraft state at the start of propagation.
91 * @param target date of propagation. Not equal to {@code initialState.getDate()}.
92 * @param <T> type of the elements
93 */
94 default <T extends CalculusFieldElement<T>> void init(FieldSpacecraftState<T> initialState, FieldAbsoluteDate<T> target) {
95 init(initialState.toSpacecraftState(), target.toAbsoluteDate());
96 }
97
98 /** {@inheritDoc}.*/
99 @Override
100 default Stream<EventDetector> getEventDetectors() {
101 return getEventDetectors(getParametersDrivers());
102 }
103
104 /** {@inheritDoc}.*/
105 @Override
106 default <T extends CalculusFieldElement<T>> Stream<FieldEventDetector<T>> getFieldEventDetectors(Field<T> field) {
107 return getFieldEventDetectors(field, getParametersDrivers());
108 }
109
110 /** Compute the contribution of the force model to the perturbing
111 * acceleration.
112 * <p>
113 * The default implementation simply adds the {@link #acceleration(SpacecraftState, double[]) acceleration}
114 * as a non-Keplerian acceleration.
115 * </p>
116 * @param s current state information: date, kinematics, attitude
117 * @param adder object where the contribution should be added
118 */
119 default void addContribution(SpacecraftState s, TimeDerivativesEquations adder) {
120 adder.addNonKeplerianAcceleration(acceleration(s, getParameters(s.getDate())));
121 }
122
123 /** Compute the contribution of the force model to the perturbing
124 * acceleration.
125 * @param s current state information: date, kinematics, attitude
126 * @param adder object where the contribution should be added
127 * @param <T> type of the elements
128 */
129 default <T extends CalculusFieldElement<T>> void addContribution(FieldSpacecraftState<T> s, FieldTimeDerivativesEquations<T> adder) {
130 adder.addNonKeplerianAcceleration(acceleration(s, getParameters(s.getDate().getField(), s.getDate())));
131 }
132
133 /** Check if force model depends on position only at a given, fixed date.
134 * @return true if force model depends on position only, false
135 * if it depends on velocity, either directly or due to a dependency
136 * on attitude
137 * @since 9.0
138 */
139 boolean dependsOnPositionOnly();
140
141 /** Check if force model depends on attitude's rotation rate or acceleration at a given, fixed date.
142 * If false, it essentially means that at most the attitude's rotation is used when computing the acceleration vector.
143 * The default implementation returns false as common forces do not.
144 * @return true if force model depends on attitude derivatives
145 * @since 12.1
146 */
147 default boolean dependsOnAttitudeRate() {
148 return false;
149 }
150
151 /** Compute acceleration.
152 * @param s current state information: date, kinematics, attitude
153 * @param parameters values of the force model parameters at state date,
154 * only 1 value for each parameterDriver
155 * @return acceleration in same frame as state
156 * @since 9.0
157 */
158 Vector3D acceleration(SpacecraftState s, double[] parameters);
159
160 /** Compute acceleration.
161 * @param s current state information: date, kinematics, attitude
162 * @param parameters values of the force model parameters at state date,
163 * only 1 value for each parameterDriver
164 * @return acceleration in same frame as state
165 * @param <T> type of the elements
166 * @since 9.0
167 */
168 <T extends CalculusFieldElement<T>> FieldVector3D<T> acceleration(FieldSpacecraftState<T> s, T[] parameters);
169 }