1   /* Copyright 2002-2025 CS GROUP
2    * Licensed to CS GROUP (CS) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * CS licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *   http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  package org.orekit.estimation.measurements;
18  
19  import java.util.Arrays;
20  
21  import org.hipparchus.analysis.differentiation.Gradient;
22  import org.orekit.propagation.SpacecraftState;
23  import org.orekit.time.AbsoluteDate;
24  import org.orekit.utils.Constants;
25  import org.orekit.utils.ParameterDriver;
26  import org.orekit.utils.TimeSpanMap.Span;
27  import org.orekit.utils.TimeStampedFieldPVCoordinates;
28  import org.orekit.utils.TimeStampedPVCoordinates;
29  
30  /** Class modeling a range measurement from a ground station.
31   * <p>
32   * For one-way measurements, a signal is emitted by the satellite
33   * and received by the ground station. The measurement value is the
34   * elapsed time between emission and reception multiplied by c where
35   * c is the speed of light.
36   * </p>
37   * <p>
38   * For two-way measurements, the measurement is considered to be a signal
39   * emitted from a ground station, reflected on spacecraft, and received
40   * on the same ground station. Its value is the elapsed time between
41   * emission and reception multiplied by c/2 where c is the speed of light.
42   * </p>
43   * <p>
44   * The motion of both the station and the spacecraft during the signal
45   * flight time are taken into account. The date of the measurement
46   * corresponds to the reception on ground of the emitted or reflected signal.
47   * </p>
48   * <p>
49   * The clock offsets of both the ground station and the satellite are taken
50   * into account. These offsets correspond to the values that must be subtracted
51   * from station (resp. satellite) reading of time to compute the real physical
52   * date. These offsets have two effects:
53   * </p>
54   * <ul>
55   *   <li>as measurement date is evaluated at reception time, the real physical date
56   *   of the measurement is the observed date to which the receiving ground station
57   *   clock offset is subtracted</li>
58   *   <li>as range is evaluated using the total signal time of flight, for one-way
59   *   measurements the observed range is the real physical signal time of flight to
60   *   which (Δtg - Δts) ⨯ c is added, where Δtg (resp. Δts) is the clock offset for the
61   *   receiving ground station (resp. emitting satellite). A similar effect exists in
62   *   two-way measurements but it is computed as (Δtg - Δtg) ⨯ c / 2 as the same ground
63   *   station clock is used for initial emission and final reception and therefore it evaluates
64   *   to zero.</li>
65   * </ul>
66   * @author Thierry Ceolin
67   * @author Luc Maisonobe
68   * @author Maxime Journot
69   * @since 8.0
70   */
71  public class Range extends GroundReceiverMeasurement<Range> {
72  
73      /** Type of the measurement. */
74      public static final String MEASUREMENT_TYPE = "Range";
75  
76      /** Simple constructor.
77       * @param station ground station from which measurement is performed
78       * @param twoWay flag indicating whether it is a two-way measurement
79       * @param date date of the measurement
80       * @param range observed value
81       * @param sigma theoretical standard deviation
82       * @param baseWeight base weight
83       * @param satellite satellite related to this measurement
84       * @since 9.3
85       */
86      public Range(final GroundStation station, final boolean twoWay, final AbsoluteDate date,
87                   final double range, final double sigma, final double baseWeight,
88                   final ObservableSatellite satellite) {
89          super(station, twoWay, date, range, sigma, baseWeight, satellite);
90      }
91  
92      /** {@inheritDoc} */
93      @Override
94      protected EstimatedMeasurementBase<Range> theoreticalEvaluationWithoutDerivatives(final int iteration,
95                                                                                        final int evaluation,
96                                                                                        final SpacecraftState[] states) {
97  
98          final GroundReceiverCommonParametersWithoutDerivatives common = computeCommonParametersWithout(states[0]);
99          final TimeStampedPVCoordinates transitPV = common.getTransitState().getPVCoordinates();
100 
101         // prepare the evaluation
102         final EstimatedMeasurementBase<Range> estimated;
103         final double range;
104 
105         if (isTwoWay()) {
106 
107             // Station at transit state date (derivatives of tauD taken into account)
108             final TimeStampedPVCoordinates stationAtTransitDate = common.getStationDownlink().shiftedBy(-common.getTauD());
109             // Uplink delay
110             final double tauU = signalTimeOfFlightAdjustableEmitter(stationAtTransitDate, transitPV.getPosition(),
111                                                                     transitPV.getDate(), common.getState().getFrame());
112             final TimeStampedPVCoordinates stationUplink = common.getStationDownlink().shiftedBy(-common.getTauD() - tauU);
113 
114             // Prepare the evaluation
115             estimated = new EstimatedMeasurementBase<>(this, iteration, evaluation,
116                                                         new SpacecraftState[] {
117                                                             common.getTransitState()
118                                                         }, new TimeStampedPVCoordinates[] {
119                                                             stationUplink,
120                                                             transitPV,
121                                                             common.getStationDownlink()
122                                                         });
123 
124             // Range value
125             final double cOver2 = 0.5 * Constants.SPEED_OF_LIGHT;
126             final double tau    = common.getTauD() + tauU;
127             range               = tau * cOver2;
128 
129         } else {
130 
131             estimated = new EstimatedMeasurementBase<>(this, iteration, evaluation,
132                                                        new SpacecraftState[] {
133                                                            common.getTransitState()
134                                                        }, new TimeStampedPVCoordinates[] {
135                                                            transitPV,
136                                                            common.getStationDownlink()
137                                                        });
138 
139             // Clock offsets
140             final ObservableSatellite satellite = getSatellites().get(0);
141             final double              dts       = satellite.getClockOffsetDriver().getValue(common.getState().getDate());
142             final double              dtg       = getStation().getClockOffsetDriver().getValue(common.getState().getDate());
143 
144             // Range value
145             range = (common.getTauD() + dtg - dts) * Constants.SPEED_OF_LIGHT;
146 
147         }
148 
149         estimated.setEstimatedValue(range);
150 
151         return estimated;
152 
153     }
154 
155     /** {@inheritDoc} */
156     @Override
157     protected EstimatedMeasurement<Range> theoreticalEvaluation(final int iteration,
158                                                                 final int evaluation,
159                                                                 final SpacecraftState[] states) {
160 
161         final SpacecraftState state = states[0];
162 
163         // Range derivatives are computed with respect to spacecraft state in inertial frame
164         // and station parameters
165         // ----------------------
166         //
167         // Parameters:
168         //  - 0..2 - Position of the spacecraft in inertial frame
169         //  - 3..5 - Velocity of the spacecraft in inertial frame
170         //  - 6..n - measurements parameters (clock offset, station offsets, pole, prime meridian, sat clock offset...)
171         final GroundReceiverCommonParametersWithDerivatives common = computeCommonParametersWithDerivatives(state);
172         final int nbParams = common.getTauD().getFreeParameters();
173         final TimeStampedFieldPVCoordinates<Gradient> transitPV = common.getTransitPV();
174 
175         // prepare the evaluation
176         final EstimatedMeasurement<Range> estimated;
177         final Gradient range;
178 
179         if (isTwoWay()) {
180 
181             // Station at transit state date (derivatives of tauD taken into account)
182             final TimeStampedFieldPVCoordinates<Gradient> stationAtTransitDate =
183                             common.getStationDownlink().shiftedBy(common.getTauD().negate());
184             // Uplink delay
185             final Gradient tauU =
186                             signalTimeOfFlightAdjustableEmitter(stationAtTransitDate, transitPV.getPosition(), transitPV.getDate(),
187                                                                 state.getFrame());
188             final TimeStampedFieldPVCoordinates<Gradient> stationUplink =
189                             common.getStationDownlink().shiftedBy(-common.getTauD().getValue() - tauU.getValue());
190 
191             // Prepare the evaluation
192             estimated = new EstimatedMeasurement<>(this, iteration, evaluation,
193                                                             new SpacecraftState[] {
194                                                                 common.getTransitState()
195                                                             }, new TimeStampedPVCoordinates[] {
196                                                                 stationUplink.toTimeStampedPVCoordinates(),
197                                                                 transitPV.toTimeStampedPVCoordinates(),
198                                                                 common.getStationDownlink().toTimeStampedPVCoordinates()
199                                                             });
200 
201             // Range value
202             final double   cOver2 = 0.5 * Constants.SPEED_OF_LIGHT;
203             final Gradient tau    = common.getTauD().add(tauU);
204             range                 = tau.multiply(cOver2);
205 
206         } else {
207 
208             estimated = new EstimatedMeasurement<>(this, iteration, evaluation,
209                             new SpacecraftState[] {
210                                 common.getTransitState()
211                             }, new TimeStampedPVCoordinates[] {
212                                 transitPV.toTimeStampedPVCoordinates(),
213                                 common.getStationDownlink().toTimeStampedPVCoordinates()
214                             });
215 
216             // Clock offsets
217             final ObservableSatellite satellite = getSatellites().get(0);
218             final Gradient            dts       = satellite.getClockOffsetDriver().getValue(nbParams, common.getIndices(), state.getDate());
219             final Gradient            dtg       = getStation().getClockOffsetDriver().getValue(nbParams, common.getIndices(), state.getDate());
220 
221             // Range value
222             range = common.getTauD().add(dtg).subtract(dts).multiply(Constants.SPEED_OF_LIGHT);
223 
224         }
225 
226         estimated.setEstimatedValue(range.getValue());
227 
228         // Range first order derivatives with respect to state
229         final double[] derivatives = range.getGradient();
230         estimated.setStateDerivatives(0, Arrays.copyOfRange(derivatives, 0, 6));
231 
232         // Set first order derivatives with respect to parameters
233         for (final ParameterDriver driver : getParametersDrivers()) {
234             for (Span<String> span = driver.getNamesSpanMap().getFirstSpan(); span != null; span = span.next()) {
235                 final Integer index = common.getIndices().get(span.getData());
236                 if (index != null) {
237                     estimated.setParameterDerivatives(driver, span.getStart(), derivatives[index]);
238                 }
239             }
240         }
241 
242         return estimated;
243 
244     }
245 
246 }