1 /* Copyright 2002-2025 CS GROUP
2 * Licensed to CS GROUP (CS) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * CS licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17
18 package org.orekit.estimation.measurements.modifiers;
19
20 import org.hipparchus.util.FastMath;
21 import org.orekit.estimation.measurements.EstimatedMeasurementBase;
22 import org.orekit.frames.Frame;
23 import org.orekit.orbits.KeplerianOrbit;
24 import org.orekit.propagation.SpacecraftState;
25 import org.orekit.utils.Constants;
26 import org.orekit.utils.TimeStampedPVCoordinates;
27
28 /**
29 * Class modifying theoretical measurements with relativistic J2 clock correction.
30 * <p>
31 * Relativistic clock correction of the effects caused by the oblateness of Earth on
32 * the gravity potential.
33 * </p>
34 * <p>
35 * The time delay caused by this effect is computed based on the orbital parameters of the
36 * emitter's orbit.
37 * </p>
38 *
39 * @author Louis Aucouturier
40 * @since 11.2
41 *
42 * @see "Teunissen, Peter, and Oliver Montenbruck, eds. Springer handbook of global navigation
43 * satellite systems. Chapter 19.2. Equation 19.18 Springer, 2017."
44 */
45 public class AbstractRelativisticJ2ClockModifier {
46
47 /**
48 * Relativistic J2 effect constant.
49 */
50 private final double cJ2;
51
52 /** Central attraction coefficient. */
53 private final double gm;
54
55 /**
56 * Constructor for the Relativistic J2 Clock modifier.
57 * @param gm Earth gravitational constant (mu) in m³/s².
58 * @param c20 Earth un-normalized second zonal coefficient (Signed J2 constant, is negative) (Typical value -1.0826e-3).
59 * @param equatorialRadius Earth equatorial radius in m.
60 */
61 public AbstractRelativisticJ2ClockModifier(final double gm,
62 final double c20,
63 final double equatorialRadius) {
64 this.cJ2 = 1.5 * c20 * equatorialRadius * equatorialRadius /
65 (Constants.SPEED_OF_LIGHT * Constants.SPEED_OF_LIGHT);
66 this.gm = gm;
67 }
68
69 /** Get the name of the effect modifying the measurement.
70 * @return name of the effect modifying the measurement
71 * @since 13.0
72 */
73 public String getEffectName() {
74 return "J₂ clock relativity";
75 }
76
77 /**
78 * Computes the relativistic J2 clock time delay correction.
79 *
80 * @param estimated EstimatedMeasurements on which to calculate the correction
81 * @return dt_relJ2clk Time delay due to the relativistic J2 clock effect in seconds
82 */
83 protected double relativisticJ2Correction(final EstimatedMeasurementBase<?> estimated) {
84
85 // Extracting the state of the receiver to determine the frame and mu
86 //
87 // The satellite states are stored at the creation of the estimated measurements
88 // and can contain up to 2 elements. In most cases, only the receiver's state and
89 // therefore frame is stored, with the emitter's frame corresponding to the receiver's.// Still, in the InterSatellites case, the states of the 2 spacecrafts are stored, // and can contain different frames. This case is treated by looking at the length
90 // of SpacecraftState stored in the Estimated Measurements, with the only length 2
91 // case is the InterSatellites case.
92 //
93 final SpacecraftState[] states = estimated.getStates();
94 final SpacecraftState state = (states.length < 2) ? states[0] : states[1];
95
96 final Frame remoteFrame = state.getFrame();
97
98 // Getting Participants to extract the remote PV
99 final TimeStampedPVCoordinates[] pvs = estimated.getParticipants();
100
101 // Checking if the correction is applied on a two-way GNSS problem
102 // In that case the emitter is at index 1, else index 0
103 final TimeStampedPVCoordinates pvRemote = (pvs.length < 3) ? pvs[0] : pvs[1];
104
105 // Define a Keplerian orbit to extract the orbital parameters needed to compute the correction
106 final KeplerianOrbit remoteOrbit = new KeplerianOrbit(pvRemote, remoteFrame, gm);
107 final double orbitInclination = remoteOrbit.getI();
108
109 // u = perigee argument + true anomaly
110 final double orbitU = remoteOrbit.getTrueAnomaly() + remoteOrbit.getPerigeeArgument();
111 final double n = remoteOrbit.getKeplerianMeanMotion();
112
113 // Returning the value of the time delay
114 return cJ2 * n * FastMath.sin(2 * orbitU) * FastMath.sin(orbitInclination) * FastMath.sin(orbitInclination);
115 }
116
117 }