1 /* Copyright 2002-2025 CS GROUP
2 * Licensed to CS GROUP (CS) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * CS licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17 package org.orekit.forces.radiation;
18
19 import java.util.ArrayList;
20 import java.util.Collections;
21 import java.util.List;
22
23 import org.hipparchus.CalculusFieldElement;
24 import org.hipparchus.geometry.euclidean.threed.FieldVector3D;
25 import org.hipparchus.geometry.euclidean.threed.Vector3D;
26 import org.hipparchus.util.FastMath;
27 import org.orekit.propagation.FieldSpacecraftState;
28 import org.orekit.propagation.SpacecraftState;
29 import org.orekit.utils.ParameterDriver;
30
31 /** This class represents the features of a simplified spacecraft.
32 * <p>This model uses the classical thermo-optical coefficients
33 * Ca for absorption, Cs for specular reflection and Cd for diffuse
34 * reflection. The equation Ca + Cs + Cd = 1 always holds.
35 * </p>
36 * <p>
37 * A less standard set of coefficients α = Ca for absorption and
38 * τ = Cs/(1-Ca) for specular reflection is implemented in the sister
39 * class {@link IsotropicRadiationCNES95Convention}.
40 * </p>
41 *
42 * @see org.orekit.forces.BoxAndSolarArraySpacecraft
43 * @see org.orekit.forces.drag.IsotropicDrag
44 * @see IsotropicRadiationCNES95Convention
45 * @author Luc Maisonobe
46 * @since 7.1
47 */
48 public class IsotropicRadiationClassicalConvention implements RadiationSensitive {
49
50 /** Parameters scaling factor.
51 * <p>
52 * We use a power of 2 to avoid numeric noise introduction
53 * in the multiplications/divisions sequences.
54 * </p>
55 */
56 private final double SCALE = FastMath.scalb(1.0, -3);
57
58 /** Drivers for absorption and reflection coefficients. */
59 private final List<ParameterDriver> parameterDrivers;
60
61 /** Cross section (m²). */
62 private final double crossSection;
63
64 /** Simple constructor.
65 * @param crossSection Surface (m²)
66 * @param ca absorption coefficient Ca between 0.0 an 1.0
67 * @param cs specular reflection coefficient Cs between 0.0 an 1.0
68 */
69 public IsotropicRadiationClassicalConvention(final double crossSection, final double ca, final double cs) {
70 this.parameterDrivers = new ArrayList<>(3);
71 parameterDrivers.add(new ParameterDriver(RadiationSensitive.GLOBAL_RADIATION_FACTOR, 1.0, SCALE, 0.0, Double.POSITIVE_INFINITY));
72 parameterDrivers.add(new ParameterDriver(RadiationSensitive.ABSORPTION_COEFFICIENT, ca, SCALE, 0.0, 1.0));
73 parameterDrivers.add(new ParameterDriver(RadiationSensitive.REFLECTION_COEFFICIENT, cs, SCALE, 0.0, 1.0));
74 this.crossSection = crossSection;
75 }
76
77 /** {@inheritDoc} */
78 @Override
79 public List<ParameterDriver> getRadiationParametersDrivers() {
80 return Collections.unmodifiableList(parameterDrivers);
81 }
82
83 /** {@inheritDoc} */
84 @Override
85 public Vector3D radiationPressureAcceleration(final SpacecraftState state, final Vector3D flux,
86 final double[] parameters) {
87 final double ca = parameters[1];
88 final double cs = parameters[2];
89 final double kP = parameters[0] * crossSection * (1 + 4 * (1.0 - ca - cs) / 9.0);
90 return new Vector3D(kP / state.getMass(), flux);
91 }
92
93 /** {@inheritDoc} */
94 @Override
95 public <T extends CalculusFieldElement<T>> FieldVector3D<T>
96 radiationPressureAcceleration(final FieldSpacecraftState<T> state,
97 final FieldVector3D<T> flux,
98 final T[] parameters) {
99 final T ca = parameters[1];
100 final T cs = parameters[2];
101 final T kP = ca.add(cs).negate().add(1).multiply(4.0 / 9.0).add(1).
102 multiply(parameters[0]).multiply(crossSection);
103 return new FieldVector3D<>(state.getMass().reciprocal().multiply(kP), flux);
104 }
105 }